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CONVERGENCE RATE OF EXTREMES FOR
THE GENERALIZED SHORT-TAILED
SYMMETRIC DISTRIBUTION

Fuming LIN, ZUOXIANG PENG, AND Kaizuar Yu

ABSTRACT. Denote M, the maximum of n independent and identically
distributed variables from the generalized short-tailed symmetric distribu-
tion. This paper shows the pointwise convergence rate of the distribution
of My to exp(—e~ %) and the supremum-metric-based convergence rate
as well.

1. Introduction

Systematic introductions and reviews of the extreme value theory (EVT)
can be found in Leadbetter et al. [11], Resnick [20] and recently in Embrechts
et al. [5], Kotz and Nadarajah [10], Falk et al. [6] and De Haan and Ferreira
[4], amongst others. Many fields of science, with the field of finance as the
most important proponent, have found non-normal data and more than seventy
years after the Extremal Types Theorem was proved in complete generality by
Gnedenko [7], the exploration of limit distributions of non-normal extremes is
as momentous and timely as ever. Peng et al. [9] considered the convergence of
extremes of the general error distribution and for more results of non-normal
extremes, we refer the reader to Lin and Peng [16], Lin and Jiang [15] and
Liao et al. [13]. Since asymptotic results are used in most EVT applications,
such as estimating the VaR in modern risk management, and the estimation
precision need to be assessed, we have to face another interesting problem, i.e.,
examining the convergence rate of extremes. With regard to general sequences,
several authors considered the uniform convergence rate of their extremes; for
instance, De Haan and Resnick [4] and Cheng and Jiang [2]. Particularly,
Hall and Wellner [9] and Hall [8] studied the cases of exponential and normal
distributions extremes, respectively and for other related results, we refer the
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reader to Peng et al. [18], Lin et al. [17], Chen et al. [1], Liao and Peng [12]
and Liao et al. [14].
Recently, Tiku and Vaughan [21] introduced a short-tailed symmetric dis-
tribution (STSD for short) family whose density is given by
2

0= 7=l o) ew{- T}
= — _— e —_— —
Sr(@ o 2TZE Xp 5 |
where r is positive, A = /(r — a) with a < r, and constant
+oo 1 ZCQ

m{l—i— ix } exp{ — ?}dx

Lin and Jiang [15] generahzed the STSD to the version of the family of 4-
parameters, the generalized short-tailed symmetric distribution (GSTSD for
short), with the probability density function

A A h ||”
1.1 F’z:—{lJr—zp} ex {f—}
(1.1) @) = o= {1 gy} e { -
Here, p, q,r and h are positive, A = h/(h—a) with a < h, F(z) is the camulative
distribution function of GSTSD and constant
+oo g {1+ | |p}he { |;c|r}d
—|x Xp4q — —— pdz.
V2T P q
Throughout the paper, 1et {Xk,k > 1} be a sequence of independent and
identically distributed random variables from GSTSD and M,, = max{Xj,1 <
k <n}. Lin and Jiang [15] proved that

D™t =

A—l

(1.2) 1i_>m P(M,, < apzx+b,) =exp(—e™*) =: A(z),
where norming constants a,, = «,, and b,, = 3, with
o
" r(logn)t-1/r’
(13) b =0 ((logm)" — 2 )
(logn)t=1/r )"

where (and in the sequel) A = Llog(qlogn) — hlog(l + (g logn)?/™) —
log(rm). They presented that the upper tail of GSTSD is exponentially
delaying and satisfies

1—F(m):c($)exp(—/1m%dt)

for 1 < p < r and sufficiently large x, where

(o) > e 22/

(/2" . q
- exp —hln(1+)\/2h)+/ ay“1<1+2—yT)dy as & — 00,
1
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f@&)=t/(rt"/q—1+7)

AptP~1/2
1+ X\tP /2h

H=1— .
9(t) (rt" g —1+7)/t
For convenience, we give instead the following expressions of f(¢) and g(¢):
f(&)=qt'™"/r,
p—1
(r =)/t = (25—)/(+ 5:t7)
rt*=1/q '
By Proposition 1.1(a) and Corollary 1.7 in Resnick [20], a natural way to gain

the expressions of norming constants a, and b, is to solve the following equa-
tions

gt) =1+

‘s

(1 —bﬁ) exp(—%)—br !
4)
(1.

(1.4) ra,bl /g =1, and

But exact solutions of equations in (1
mations are necessary, such as those in

ap/a, — 1 and (B, —by)/a, — 0.

In the following, a, and b, are defined by (1.4) unless otherwise specified.
This paper is concerned with considering the convergence rates of (1.2) in two
norming constants cases, separately. Like the case of normal extremes in Hall
[8], the different norming constants can lead to the different convergence rate
of GSTSD extremes, which will be explained later.

The remainder of the paper is organized as follows. In Section 2, main
results and some remarks are presented. Section 3 contains some lemmas and
proofs of main results are postponed in Section 4. In the sequel, C and C;,
i =1,2,...,12 are positive functions of h, \,r,p and n;, i = 1,2,...,6 stand
for positive integers whose value may be associated with parameters in (1.1).

are impossible to derive, so approxi-
3). One can easily check that

2. Main results

The convergence rate of (1.2) may be considered generally by uniform, total
variation and Lévy metrics. In fact uniform and Lévy metrics can be replaced
by each other, see Remarks in Hall [8]. Here we mainly focus our minds on
uniform metrics and the key results are as followed.

Theorem 2.1. Let {&,} be a sequence of independent and identically dis-
tributed random variables from GSTSD with parameters satisfying r > 2,
r—1> (ph) V (2p) and r > p > 1. Then there exist positive constants
Cy(h, A\, 1, p) < Ca(h, A\, r,p), independent of n, such that, for n > nq,
(2.1) Cy(h,\,r,p)/logn < sup |F"(apx + by) — exp(—e™ )|

—oco<r<oo

< Ca(h,A\,1yp)/ logn.
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Theorem 2.2. Let o, B, be defined in (1.3). Then

_,(r=1)(r —1— hp)? (loglogn)?
273 logn

F"(anx + fn) —exp(—e™") ~exp(—e™")e

for large n, where F is the distribution function of GSTSD with parameters
satisfyingr > 2, r—1>ph andr >p> 1.

Remark 2.1. Theorem 2.2 shows that with the norming constants in (1.3) the
rate of convergence is no better than (loglogn)?/logn. In fact, for af = a,r,
and b = b, + dnay in equation (3.7), Lemma 3.2 and the proof of Theorem
2.2 together imply that the pointwise convergence rate of F™(akx + b%) to
the corresponding limit is slower than 1/logn and approaches to it as the
expansions for a and b} are made indefinitely.

Remark 2.2. For h = 0,r = 2 and ¢ = 2, GSTSD reduces to the standard
normal distribution and hence a better result can be obtained, i.e., Ca(h, A, r, p)
is less than 3 in (2.1), see Hall [8].

3. Some technical lemmas

The following lemmas are used in the proofs of main results.

Lemma 3.1. Ifr >p>1andr — 1> ph in (1.1), then forx > ¢

Agx'~T A h z"
1-F = 14+ P _Z U _
(x) o { + T } exp{ q} r(x)
Ag A h—1
'L gpat) exp(—a' fg)
A gir—1) _ A\pq -
A b _Ar = 2P p—r
o0 (A (- B
where
Aq2 1-2r | A(r—=1) = Aph 14+p—2r
0<r(z) < TQ\/%((T*].)SC JrTx P )
A h—1
(3.2) X (1 + %x”) exp(—z"/q),
and
Aq3 A h—2
14+ —aP —a"
0<s(z) < 7“3\/%( + 9% )2 exp(—z"/q)

)‘2(7" —1—ph)(2r —1—ph) , —3r+1
x ( 4h2 vt

2Xr2 =3 r+ X\ 3Npr
+ ( h )

(3.3) +(r—1)(2r - 1),7:1_3T).

)\]72
2 ) p—3r+1
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Proof. By integration by parts, we have

+o0 A A h
— = il AN T
1—F(x) ) m{lnL th } exp{ t /q}dt
Ag o, A » h z"
(3.4) =77 {1 + A } exp{ 3 } —r(z).
Similarly,
0 Aqt—r A(r—1)—Aph A \h-l
q P
= e AN T AR p (14 D T
r(z) /m o ((r )+ 57 t )( + th ) exp(—t"/q)dt
Ag® 1—2p  Ar=1)—Aph .,
— -1 r +p—2r
o R T
A\l .
(3.5) (1 + 5% ) exp(—x"/q) — s(x).

Substituting the expression for 7(x) in (3.5) into equation (3.4) yields equation
(3.1). Noting that W > 0 (the coefficient of t¥) in the integration
in equation (3.5), there exists a positive constant C;(p,q,r, h) such that for
x> Cy(p,q,r, h), we have r(x) > 0. Similarly to arguments for r(z) in equation
(3.5), we furthermore have

s(x) = /ZJFOO Ag” (1 + itp) " exp(—t"/q)

221 2h
)‘2(T —1—ph)(2r —1—ph) 2p—2r
x ( 4?2 !
2Ar2 —3Xr+ X 3)pr Ap? p—2r
+( h R e DL
+(r = 1)(2r = 1))t
Aq3 A » h—2 ;
= m(l + %zf ) exp(—z"/q)
% ()\2(T —1 —ph)(QT —1 _ph)zQp—3r+1
4h?2
202 — 3 r + X 3A\pr Ap? p—3r+1
+( h - e
+ (r—1)(2r — 1)x1_3r)
+oo A 3
(3.6) + / T exp(—t"/q)B(t)dt,
z  T32m
where

A NP3 A3 (r =1 —ph)(2r — 1 — hp)(ph—3r+1) 5 4.
B(t) = (1+ %t’)) ( 5 30
N ()\2(4r2 — 67 + 2 — 3prh + 2ph + p?h)(ph —p — 3r + 1)

4h?
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n A2(r—1—ph)(2r —1—hp)(2p — 3r + 1))t2p’3’“

4h?
A(4r? — 6r + 2 — 3prh + 2ph + p*h)(p — 3r + 1)
+(
2h
N AMph—2p+1 —23}:)(r —1)(2r— 1))tp_3T

— (= )(2r = 1)@ - 1t).

2
Noting 2 (Tflfpf,zg%*l*ph) > 0 (the coefficient of t2P=2" in the integration in

equation (3.6)) there also exists a positive constant Cy(p, g, 7, h) such that, for
x > Cy(p,q,m, h) we have s(x) > 0. Hence the second inequality in (3.2)

holds. Noting o Gl ph)(%%l hp)ph=3r+1) () thus for z > Cs(p,q,7, h) (the

positive constant certainly exists), we obtain the second inequality in (3.3).
Consequently, for x > Q = maX(Ql(p, q,T, h’)a QQ (p7 q,T, h)7 Q3 (pa q,T, h’))a the
desired results hold. O

Define new norming constants a}, and b}, such that

(3.7) ay = anrp, b

n

=b, + 5nan7

with r, — 1 and §,, — 0 as n — oco. Write a*x + b} =: t’(x) in this section
and we have the following result.

Lemma 3.2. Suppose that parameters r, p and h satisfy Lemma 3.1. For fixed
x € R and sufficiently large n such that t*(x) > C, where ¢ satisfies Lemma
3.1, we have

F(t,(2)) — A=)
= Az)e "(anb, " ((r — D)a?/2—(ph—(r — 1)z +7 =1 —ph) + (r, — Dz + 5,
+O0((anby')? + (rn — 1)% + 7).

Proof. According to Lemma 3.1, we have

(3.8) rAq ( +i( (x))p)hexp(—7(t;($)y)(t;(x))l—r

o 2h q
= (14 m) ep( U b (4 b + 6
< (14 @) e (- SO0 2 et /o
=7t (14 (1= r)andy (r = Dz +60) + (1= r)and '
0 (b i+ 6 ety s +6n>>3>)

Aa., bY rn—1)ax+6n, Aa, b?
x (1 + 5 (1Sr(?hbp)) e 4 p(1+ 2y =+ O((anby,  (roz + 5n))2))
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-1
T(TQ b7 (b (e + 62))°

xexp(—(rn—l)x—én—
q

b

((@nby, (o + 82))%))

= n_le_m(l +(1- r)anbgl(%Q + (1 + 1]1pr)x) —(rn —1a — 0,

+O(b, "7+ (7 = 1) +62)).

The second equality in (3.8) follows from the following arguments. Firstly,
using the second equation of (1.4), we have

TA;T (1 + %bﬁ)h exp ( — %)b}l_T =n"L

Secondly, noting a,b;, ! (r,z+d,) — 0, and using the expansions of (¢ (x)))" =

(anbys (rn+8,)+1)0, (1+anby (raa-+8,))1 7 and (13l o 20 11y
around 0. So some simple calculation can yield the desired resuf‘g. The proof
of the third equality in (3.8) is based on these expressions: b, 2" = O(b;""P +
(rn = 1)* 4+02), b, 700 = O(b," P + (rp, — 1) +67), b, " (rp, — 1) = O(b;," P +
(rn — 1)% + 62). Write

1+(1 - r)anbgl((rn —1Da+6,)+(1— r)anb;I:I: — #(anbgl(rnx +6,))2

+ O((anby  (rnz +6,))%) = 1+ (1 — r)anb, 'z + O, P + (r, — 1)* +62),

and

pAan b2~ ((rp — D +6,)  pAa,bllx
2(1+ 5-bh) 2(1+ 5-bh)

=1+ hpayb, 'z + OO, P + (1, — 1)* +52).

1+ + O((anby, ' (rnz + 6n))?)

Using e® = 1+ 2 + 22/2 + o(23) as & — 0 we further have
r(r—1)

exp (— (rn — 1)z — 6, - b (anby (rot + 6,))?
q
b’l‘
— 2 0((anb; Hrpz + 6n))3))
—1
=1—(r,— 1z —6,— rTanbr_lliEQ +O0(b," P + (rn = 1)* + 67.).

So, an easy multiplication can result in the equality.
Similarly to the proof of (3.8),

g (r = Dt (@) 7"+ 2 @)
r 1+ 3 (8, (2))P
=1—(r—1—ph)ab, '+ O0(b,"P).

1—

(3.9)
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Note that
(1)) = Canbyt + O((anby '),
(14 o @P) " = (P +50)
Using (3.3), we have

Ag® A

0 < s(tn(2)) < (1+ o (8, (2)F)" 2 exp(—(t(2))" /9)

r3\/2r
. ()\2(r —-1- pil})ngT —1—ph) (" (z))2p—3r+1
+ (WQ _:M = 3A2pr +Ap + %ﬂ) (7 ()P~
+ (= 1) (2r = 1)(E ) )
- Tt g @ en (- CED) @)
(14 gt )y (P g e
(2)\7’ f}iw A 3A2pr gt A%) (5 (x))P~2

+ (= 1) = 1)(t () ")

B TA;IFO N %(t;(x))p)h exp ( _ @)(ﬁl(@)l—r x (th (x)) 7P
@)+ g (g
2\r _}?Ar tA 3A2pr +p+ %) (th ()P~
+ (r — 1)(27“ - 1)(75;(‘%))_%)'
Noting
3_2((1&;;(90))_” n %)—2 . ()\ (r—1 —pZ})LgQr —1—ph) (th ()2
+(2)\r ‘:Ar A SAQPT +p+ %)(t:;(w))p‘”

+r = 1)@ = 1)t (@) )
is bounded, combining (¢ (z))~% = %panb;l + O((anb;1)?) and (3.8) yields

(3.10) s(t(x)) = O(n™ (anby)?).
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Combining (3.8), (3.9) and (3.10), it follows that
Fr (5 (2) — Az)

= (1ot (i (g (1 2 )+ T
— 1)

— (rp — 1)z — 6+ O(b;" P + (1 +52)) ~A(z)
2
T hp \_ r—1—ph B
= A(z)e ((r 1anb,, (2 +(1+1_T):c+ 3 )+(Tn 1)z
+ 6, + 0B, P+ (r, —1)* + 53)).
The proof is completed. ([

Lemma 3.3. Suppose r —1 > 2p and r > p > 1. Then, there exists a positive
integer ng such that, for n > ng,

1+ 3 (anm 4 bp)P\ —
(3.11) ( +2h(aft )) exp(—r
1+ﬁbn

Proof. Write the left-hand side of (3.11) as

1
anbgle) <1 for x > 0.

r;l ;;L(anx—i—bn)p) — hlog (1+%bp))

Noting that a,b,! ~ 1/(2rlogn), then the inequality can be checked easily. [J

exp ( — anb 2 4+ hlog (1 +

4. The proofs of main results

For convenience, we first prove Theorem 2.2, which partially completes the
proof of Theorem 2.1.

Proof of Theorem 2.2. Firstly, we prove the following asymptotic expansions
of b,:

(4.1) bn = Bn + o((logn)*/7~1)
and
_ 2 2
by = B, — (r—1A ((loglogn) )
2q—1/rr2(1og n)2—1/r (log n)2—1/r

We can obtain (4.1) similarly to the arguments of Example 2 on pages 71-72

in Resnick [20] or the proof of Theorem 3.2 in Lin and Jiang [15]. Now put
b, = Bn + On,

where 0, = o((logn)* ). Note log(1 — ) = —z + 222 + O(2?) and (1 — )" =

1—vr+ ”(v D22 4+ O(2®) as « — 0. Substituting b, = B, + 0, into

q A b
—hlog (14+ 202) + 22 4 (r — 1) logh, = logn,
. _271_) og( + AL ) . + (r—1)log ogn

—1og(
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this yields

[(kg@((l—%)r—l) n %*hplog(qlogn) + (r—1—hp)log (1 — ﬁ)

o (38) s () o (1 o)1 ) )]

x (rqg"r(logn) " 7r6,) " +14+0(1)=0

and hence
0, ~ {_ (1ogn)((1 _ HOAgn)T — 1) - %ﬁhplog(fﬁogn)
(1= ) ™ vt () + v (3)
+ hlog (1 + %(qlogn)fg (1 - rlfgn)_p”

/(rq_%(logn)l_%)-

Once again let
(r—1)A2

0, = —
2q—1/7‘742 (lOg n)2—1/7‘

+ vy

where v,, = O(M). So, we have

log n)2-1/7
(r —1)A2
42 by, = By — "
( ) 6 2q_1/T7‘2(1ogn)2_1/T +v

Noting the definition of f,, (4.2) deduces the following results:

b~ 1 ’rn_lz%_1N_(r—l—hp)(r—l)loglogn
" rlogn an r? logn
5 - Bn—bn (r—1)(r — 1 — hp)? (loglogn)?
" a, 2r3 logn
for large n. So the desired result follows by Lemma 3.2. O

Proof of Theorem 2.1. Letting r, = 1, §, = 0 in (3.7) and noting a,b,,* ~
—L_ by Lemma 3.2 there exists a constant Cy(h, A, 7, p) such that

rlogmn’
Ci(h, A,
sup  |F"(tn(2)) — Ax)|= sup  |F™(anz +by) — Alz)] > M
—oo<T< o0 o<z <00 ogn

for n > ng (ng is a positive integer). For the upper bound, we need to prove

(4.3) sup  |F"(tn(z)) — A(2)] < daranby,?t,
0<z<+00

(4.4) sup |F"™(tn(x)) — A(z)| < daganby,*,
—cp<z<0

(4.5) sup  |F"(tn(x)) — A(x)| < dazanb,*

—oo<x<—cp,
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for n > ng, where do; > 0, ¢ = 1,2, 3 are positive constants and
cn = loglogb;, > C with C satisfying Lemma 3.1.
According to (4.1), we have

q(r —1— hp)
T

qlogn — log(qlogn) < b;, < qlogn

and there furthermore exists a positive integer n3 such that

(4.6) sup loglog b, <L su loglog(glog ) <L
n>ng by q n>ny rlogn — (r —1— hp)log(qlogn) = ¢
So,
by, — apcy, >0
for n > ng4.

We firstly consider the case of x > —¢,, and define
Rn(z) = —(nlog F(ant + bn) + n¢pn(z)), Bn(r) = exp(—Rn),
Ay (z) = exp(—nip, () + e7%),
where ¢y, (z) = 1 — F(anx + by). Using the following simple result

bn
by, — (bn — ancy)” = / rt" Tt < ragc, bl
b

n —AnCn

for r > 1, and according to (3.1) and (1.4), it follows that
’l/)n(z) < "/)n(*cn)

h
- bp—ancn)”
< ,,,Agfr (bn - ancn>1 (]_ —+ %(bn — ancn)p) exp ( o %)

A h _ T
_ 1 (1 (bn—ancn)? pr (b —ancy)
=n" (1 = apcyby ) T(—2h1+;hbﬁ ) exp (T; qn = )

N\ 1—7 1+Abp 1_ﬂb7r1 log b7 )P h
< sup {(17 qloglogbn) ( 2h n( - On  loglog ) ) (n—l IOgb;)}

PNyN2
n>ns rby 1+530n

= QS(pv%ra h) <1
Thus,
inf (1 — () >1-Cs(p,q,m,h) > 0.

T>—cCp
Noting that
2

log(l — ) < —z, log(l —x) > —z — ﬁ

for0<z <1,

we have

nyn (—cn)
2(1 - Q5(pa aQ,T, h))

0 < Ro(z) = —(nlog(l — $u()) + nthu(a)) <
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14500
2(]‘ - Q5(pa q,7T, h’))aglbn
Noting b, < glogn for n > ng, it follows that

(1 — ancnby )20 (L)%
(

(4.7) < r(qn) b exp(2¢,)).

nflrb; exp(2¢cy,) < i7”fl(q( logn)® < Cg4(g,7), for n > ns.
q q

Substituting this into (4.7) yields

1+ 2 (by — aney )Py 20

_ -1\2(1-r) 2R\ non

R, (x) < :;134 ((1 Ancnb;, ") ( 1+ 208 ) )
QG((LT)

X anb;t < Cr(p,q,r, h)ab; L.
21— Csp. g7 1) rar )

So,
(4.8)  |Bn(z) — 1] < Ru(z) < C7(p,q,7, h)anb,* for n > max(nz, na, ns).
Using the inequality (4.8), we have, for z > —¢,
|F" (anx + by) — A(z)]
= |F™(anx + by) — exp(—e ™) F"(anz + by, eI~ F(anz+bn)
+ exp(—e ") F"(anx + bn)e"(lfF(a"Hb")) —exp(—e™")|
< |F™(ant + by) — exp(—e ™) F™ (anx + by, eI~ F(anz+ba))|
+ exp(—e )| F" (anz + bn)e”(lfF(a"Ier")) —1]
< exp(—e ) F™(anx + by, et~ F(ana+bn)
|exp(—n(l — F(anz + by,))) exp(e™) — 1]
+ |[F™(anx + by eI Flanetba)) _ 7|
= A()Bn(2)|An(z) = 1| + |Bn(z) — 1|
(4.9) < A@)|An(z) — 1|+ G (p, g, 7, h)anb, *.
We now prove (4.3). Note that for r > 2,

-1
1+zr>1+7’x+r(r )z2 for x > 0.
2

Take z = a,b, ! in the inequality, and multiply by b7 . By using (1.4), we have
n bn T —by -1 _
(4.10) zf(a Z o+ bn) "<7(T2 >anbnlz2 for x > 0.
q
Using (1.4), (4.10) and the definition of A, (z), for z > 0, there exists ng such
that, for n > ng,
Al () = exp(—ntpn(x) + e 7) (—n(Pn(2)) —e™7)
=—Ap(x)e (1 — ne®anF' (anx + by))




CONVERGENCE RATE OF EXTREMES 1561

— —Au(z)e” (1 et (M)h exp (bz — (anz + bn)T))

142708 q
A h _
_ 1+ 57 (anz+b, )P r—1 _
< —Ap(v)e ””(1 — (72;%1)2 ) exp ( - anb;, 1x2)) <0,

where the last inequality is due to Lemma 3.3.
Noting that A,,(z) — 1 as © — oo, we have

sup |Ap(x) — 1] = [An(0) — 1] = [exp(—n(1 — F(b,)) + 1) — 1]
= [exp(—n(n~" —r(bn)) + 1) — 1
< nr(by) exp(nr(by)) < Cs(p, q,7, h)anb, t.

The above inequalities stem from the facts: e* — 1 < ze® for 0 < z < 1, and

A¢® . A —=1)=Xph ..
nr(by) < mnbn ((T — )b+ Tb}lﬂﬂ )
A\ .

= Qg(pa q,7, h)anbr_ll

Combining with (4.9), we have, for n > max(ns, n4, ns, ng),

sup |Fn(tn(1'>> - A(ZL'>| < (Q8(p5 q,T, h’) =+ Q7(pa q,7, h’>>a’nb;1
0<z<+o0

The following we consider the case of —¢,, <z < 0. Using (1.4) and Lemma
3.1 yields the result

—np,(x) +e7*
= —n(ﬂ(a x+b )17T(1+i(a x+b )p)h
- Tm n n 2h n n
+

exp(—(an@ +ba)"/q) = (anz +by))

™

e
B n{TAq (anx + b")l_T(l + %(anx + bn)p)h exp ( — w)

ﬁ

= A (= D)(anm + b) ' 4+ 2P (a0 4 b,)

A h=1 (anz+by)" —
X (1+ﬁ(anz+bn)p) exp(f%)dn(an:chbn)}Jre z

A h
r—1 1—r [ 1+ 2h (anz+by)? (anx+by)"—b;
— by (anx + by) (*Ap exp ( — ol =
IR bn

+ qdn(anm-l-bn,)b:;—l ((7’ i 1)((1”1, + bn)l—Qr + /\(r—;%—)\ph (anx + bn)1+p—2r)

T

h—1 —h roor
x (1 + ﬁ(anwrbn)?) (1 + ﬁb{;) exp ( - %) e
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A h _
—r = 1457 (anz+bn)? dp(anz+by) (r—1)b5"

= (anb, Ly + 1)t {*K 2h X ) -1 - ( —
1+35b0 (anby " z+1)

AT (b 4+ )7 ) (14 B (an + bn)ff’)h*1 (1+20) h}
X exp ( — M) + (anbr_lll' + 1)7"—1}

=: (anb,;ll' + 1)177"67an(:0),

where 0 < d,(an2 4+ by) < 1 and

A an p\ h
Do(z) = — {(H2nln= N a0 )= (bt + 1)
1+ﬁb? " " "
et ]

h—1 —h
(1+ et 0r) " (14 40)

X dp(anx + bn)} exp ( — (anztbn) b, 7‘”) + (anby tr +1)"1

q

Since
ant +b, >0for x> —c,;e*>1—xfor x € R,
-1
(411) I+re<(I42z) <l+rz+ %ﬁ and
(1+2) " <1—=2" rgfor —1/2<2 <0,
and
(1+/\( +b)p)/(1+/\bp)<1f <z <0
57 \Un n 597 T —Cn )
Qhax 57, n (o) c T
we have

Dn(w) < — (1 — —(an,ac-l-bn)T—b:l—qm)

q

A anx py\h
X {(M) — %[(T _ 1)b;r(anb;1x + 1)—7‘ + A(r—1—ph)

1+ﬁbﬁ 2h
X P (anbtr + 1 pfr} . by" dy(anx + by, }
n " (anby ) b;f’+ﬁ(anb;11+1)p ( )
+ (@b, tz 4+ 1)"1
_ (1 (anx+by)"” —br—qm)
—an ;11 (r=1); —pr— A(r—1—ph)
X{ ba" 3 _[q b P (anby w4 1) 7 4 AT
xb;Tanb;x—i—lp_}- L dnanx—i—bn}
( ) biP 42 (anby ot 1) ( )

+ (anb, x4+ 1)"1
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_ B (anz+bn)" —b, —qz

< = (1t
X (1 — Q47)‘(T ;L ’\phb "(anby te + 1)p_T) + (@b, tz 4+ 1)"1
_ _ (apz+by)"—b; —qx

< - (1t

1 QAT (1 2 pa, b))

= = (1= QAER T (1 - 27— pagd; ')

o (anz+bn)"—b, —qx
q

QA a1 i) s

+ (@b, tz +1)"1
A(r—1)—Aph 7 —r r— -
< - 1+Q4%bn (1 —2""PT(r — p)a,b, z)

(anz+bn)" —bl, —q
+ q
+ (apby tz +1)"1
< =14 QAR (o (1 pya,bite,) 4 5tay by e
+1+ (7’ — Danb, 'z
(Q4 /\ph T(1+27‘72+1(T7p)) +(T* ].)SC+ r—1 2)anb 1

where the last inequality is attributed to (1.4) and (4.6). Meanwhile (4.11)
implies
Dy(z) > =1+ (anby 'z 4+ 1)1 > (r — Vanb, 'z
Therefore,
Ar—1)—=Xph r(142""P+(r—p)) L= 1
2h q 2

Da(@)] < anby (Cs 22 +(r=1)la ).

Furthermore, for n > ng,

67" — nipn (2))]
< (apbtz 4+ 1)1 e

_ Ar—1)—=Xph r(1+277PF(r—p)) r—1
1 . 2 —
X anby, (Q4 5T . + 52 + (r 1)|$|)
< (1 —apb, Le)reln
1 A(r=1) — Aph r(l+2 Pt (r—p) r—1, B
X anb (Q4 o - gt 1)|cn|)

< QlO(pa q,7, h)
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So,
A(x)|An(z) — 1]

)|

A(z)| exp(=nton () +e7*) — 1|
)
(

8

( (
< A(z) exp((—npn () + €7 )0)| — nipn(x) + 77|
< exp(Cio(p, ¢, 7, h)) (1 — anby, 'en)' ™"
CyrA(r =1 —ph)(A1+2"P ' (r —p))  (r—1)(=* 4 2Jz])
xS (( 2hq + 2 )

8

anb;

—cn<x<0
eiIA(:c))
< Qll(p) q,7, h)anb'r_zl

Now combining this with (4.9), for n > max(ng, n4, ns), we complete the proof
of (4.4).
Finally, focus on the case of —co < x < —c¢,. Noting that

A(@) < A(—cn) = —anby
q

we have

sup |F™(anz + by) — A)]

z<—cp

< F"(by, — ancn) + A(—cp)

< sup |Fn(anx + bn) - A(:C)| + 2A(*Cn)
—cn<z<0

1, 2r
< (Q’?(pv q,T, h) + Qll(pv q,T, h))anbnl + ?anbn !

= QlQ(pa q,7T, h’)a’nb'r_zl

and thus complete the proof of (4.5). Let ny = max{ns,n4,ns,ne} and n; =
max{ng, na}, the proof is completed. O
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