• Title/Summary/Keyword: N Flow

Search Result 3,513, Processing Time 0.037 seconds

Magnetoresistance Properties of Spin Valves Using MoN Underlayer (MoN 하지층을 이용한 스핀밸브의 자기저항 특성)

  • Kim, Ji-Won;Jo, Soon-Chul;Kim, Sang-Yoon;Ko, Hoon;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.240-244
    • /
    • 2006
  • In this paper, magnetic properties and annealing behavior of spin valve structures using Mo(MoN) layers as underlayers were studied varying the thickness of the underlayers. The spin valve structure was consisted of Si substrate/$SiO_2(2,000{\AA})/Mo(MoN)(t{\AA})/NiFe(21\;{\AA})/CoFe(28\;{\AA})/Cu(22\;{\AA})/CoFe(18\;{\AA})/IrMn(65\;{\AA})/Ta(25\;{\AA})$. Also, MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The resistivity of the MoN film increased as the $N_2$ gas flow rate was increased. After annealing at $600^{\circ}C$, XRD results did not show peaks of silicides. XPS results indicated MoN film deposited with 5 sccm of $N_2$ gas flow rate was more stable than the film deposited with 1 sccm of $N_2$ gas flow rate. The variations of MR ratio and magnetic exchange coupling fold were small for the spin valve structures using Mo(MoN) underlayers up to thickness of45 ${\AA}$. MR ratio of spin valves using MoN underlayers deposited with various $N_2$ gas flow rate was about 7.0% at RT and increased to about 7.5% after annealing at $220^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased to about 3.5%. Variation of $N_2$ gas flow rate up to 5 sccm did not change the MR ratio and $H_{ex}$ appreciably.

Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications

  • Ju, Sang-Jun;Jang, Gun-Eik;Jang, Yeo-Won;Kim, Hyun-Hoo;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.146-149
    • /
    • 2016
  • The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.

Freezing of Water in Von-Kármán Swirling Flow (Von-Kármán 회전 유동 하에서의 물의 결빙)

  • Yoo, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.413-422
    • /
    • 1996
  • Freezing of water in von-$K{\acute{a}}rm{\acute{a}}n$ swirling flow is considered. The transient behavior of the temperature distribution in both solid and liquid phases and freezing rate are determined. The fluid flow induced by the rotation of solid strongly inhibits the freezing process. The thickness of frozen layer is inversely proportional to the square root of the angular velocity of solid. As the angular velocity or initial liquid temperature becomes larger, the freezing process is more strongly inhibited by the fluid flow. When phase change is present, the transient heat transfer rate is greater than the case with no phase change.

  • PDF

Power Control in Uplink and Downlink CDMA Systems with Multiple Flow Types

  • Li Yun;Ephremides Anthony
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.313-322
    • /
    • 2006
  • We consider a power controlled code division multiple access (CDMA) system with multiple flow types. At each of the N nodes, there are F flow types with different signal-to-interference-and-noise-ratio (SINR) requirements. To keep the complexity of the transmitter low, we assume that each node uses the same power level for all its flows. The single flow case has been fully solved and is well-understood. We concentrate on the multiple flow case, and use a novel and different approach. For the uplink problem with N = 2 and F arbitrary, the necessary and sufficient conditions to have a solution are found and proved. For the general N > 1 uplink problem, we provide a necessary condition for the problem to have a solution and an iterative algorithm to find the optimum solution. For the downlink case with F > 1 some properties of the optimal sequences are obtained.

Effects of $N_2$ addition on chemical etching of silicon nitride layers in $F_2/Ar/N_2$ remote plasma processing

  • Park, S.M.;Kim, H.W.;Kim, S.I.;Yun, Y.B.;Lee, N.E.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.78-79
    • /
    • 2007
  • In this study, chemical dry characteristics of silicon nitride layers were investigated in the $F_2/N_2/Ar$ remote plasma. A toroidal-type remote plasma source was used for the generation of remote plasmas. The effects of additive $N_2$ gas on the etch rates of various silicon nitride layers deposited using different deposition techniques and precursors were investigated by varying the various process parameters, such as the $F_2$ flow rate, the addition $N_2$ flow rate and the substrate temperature. The etch rates of the various silicon nitride layers at the room temperature were initially increased and then decreased with the $N_2$ flow increased, which indicates an existence of the maximum etch rates. The etch rates of the silicon oxide layers were also significantly increased with the substrate temperature increased. In the present experiments the $F_2$ gas flow, addition $N_2$ flow rate and the substrate temperature were found to be the critical parameters in determining the etch rate of the silicon nitride layers

  • PDF

Reduced Scale Model Experiments and Numerical Simulation for Flow Uniformity in de-NOx SCR Reactor (배연탈질 SCR 반응기내 유동균일 화를 위한 축소모형실험 및 전산해석)

  • 이인영;김동화;이정빈;류경옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • SCR (Selective Catalytic Reduction) process is presently considered as one of the most effective techniques for removing nitric oxides from exhaust gases. In this study, based on the conceptually designed SCR reactor of 500 MW coal fired power plant. a reduced scale (1/20) SCR reactor model was made to analyze the flow pattern in front of catalyst layer according to the guide vane's design factors such as the number, interval, and angle of vanes. The results of the test were compared to those numerical simulation in order to assure the reliability of two methods. On the basis of our study. the critical Reynolds number (2.0$\times$ 10$^{5}$ ) was proposed for ensuring the similarity between the reduced scale model and the prototype of SCR reactor. Optimum design parameters of guide vanes were determined as follows, 4 vanes, the first vane angle of 93$^{\circ}$, and the vane intervals of 0.85 S/n, 1.05 S/n, 1.1 S/n, 1.0S/n, 1.0S/n (S: the distance of duct, n: the number of guide vanes). The excellent agreement between the results of the numerical simulation and the reduced scale model provides the validation of two methods for prediction of flow through SCR reactor.

  • PDF

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.

Physical Property of W-C-N Diffusion Barrier through Stress-Strain curve (Stress-Strain curve를 이용한 W-C-N 확산방지막 물성 특성 연구)

  • Lee, Kyu-Young;Kim, Soo-In;Park, Sang-Jae;Lee, Dong-Kwan;Jeong, Yong-Rok;Jung, Jun;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.266-270
    • /
    • 2011
  • This paper suggest tungsten (W)-carbon (C)-nitrogen (N) thin films for diffusion barrier that W is main material and C and N are additives. W-C-N thin films are deposited with fixed rates of W and C but with a variation of $N_2$ gas flow and W-C-N thin films are heated at $600^{\circ}C$. From the experimental results, the variation of elastoplastic region for W-C-N thin film measured by tribological property is larger than that of elastic region with a variation of $N_2$ gas flow. These results show that the $N_2$ gas flow is more directly related with the elastoplastic region of W-C-N thin film. Nanoindenting test executed 16 times consecutively and we got the stress-strain curve graphs and hardness datas at each sample. Through the stress-strain curve graphs, the standard diviation of stress-strain curve for $N_2$ gas flow rate of 2.0 sccm is smaller than that of 0, 0.5, 1.5 sccm. Consequently, the physical stability of W-C-N thin film depends on the flow rate of $N_2$ gas.

Comparative Evaluation of Gravimetric Measurement Methods for Suspended Particles in Indoor and Outdoor Air (실내.외 공기 중 부유먼지 측정방법 상호간의 비교평가 - 중량법을 대상으로)

  • 백성옥;박지혜;서영교
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.285-295
    • /
    • 2002
  • In this study, several types of gravimetric methods (such as high, medium, low, and ultra low volume sampling methods) were applied to determine suspended particulate matter concentrations in both ambient and indoor environments. Comparative evaluations were undertaken with SPM data obtained using a variety of samplers (TSP, PM10, and PM4.0) at different sampling flow rates. Correlation coefficients between TSP and PM10 concentrations measured at different flow rates fell in the range of 0.73∼0.94 (n=40). In addition, correlation coefficients for PM concentrations measured by different TSP samplers were in the range of 0.90∼0.95 (n=36 or n=38), while 0.77∼0.91 (n=38) for PM10 samplers. Correlation analysis was also conducted on indoor monitoring data that were measured using ultra-low-volume samplers at both different or identical flow rates. The correlation coefficients were in the range of 0.98∼0.99 (n=38) between TSP and TSP and 0.92∼0.94 (n=38) between TSP and PM10. The mean ratio for high volume PM10 to TSP concentration that was monitored at identical flow rates in the ambient air appeared to be 0.72. The mean ratios of PM10 to TSP and PM4.0 to TSP observed with identical flow rates at indoor environments were 0.47 and 0.40. The results of this study may provide empirical information concerning the compatability of aerosol data obtained by gravimetric sampling methods at different flow rates.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.