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Power Control in Uplink and Downlink CDMA Systems
with Multiple Flow Types

Yun Li and Anthony Ephremides

Abstract: 'We consider a power controlled code division multiple
access (CDMA) system with multiple flow types. At each of the [V
nodes, there are F' flow types with different signal-to-interference-
and-noise-ratio (SINR) requirements. To keep the complexity of
the transmitter low, we assume that each node uses the same power
level for all its flows. The single flow case has been fully solved and
is well-understood. We concentrate on the multiple flow case, and
use a novel and different approach. For the uplink problem with
N = 2 and F arbitrary, the necessary and sufficient conditions
to have a solution are found and proved. For the general N > 1
uplink problem, we provide a necessary condition for the problem
to have a solution and an iterative algorithm to find the optimum
solution. For the downlink case with ' > 1 some properties of the
optimal sequences are obtained.

Index Terms: Code division multiple access (CDMA), multiuser
detection, power control, user capacity.

I. INTRODUCTION

Power control is used to balance the received powers of the
users of a code division multiple access (CDMA) system, so that
no single user can create excessive interference that can destroy
the quality of the communication of other users. At the same
time, it is desirable to use power levels as low as possible to
save energy, provided the quality of service (QoS) objective de-
fined by required signal-to-interference-and-noise-ratio (SINR)
requirements is satisfied. In previous works [1]-[3], the opti-
mum power vector was found by inversion of a non-negative
matrix related to the channel gains and sequence crosscorrela-
tion property. Subsequently, in [4] iterative power control algo-
rithms were developed for many different power control prob-
lems, and it was proved that if the interference function satisfies
certain conditions, these iterative power control algorithms con-
verge to the optimum power vector. Later in [5], it was proved
that the iterative power control algorithms converge at a geomet-
ric rate.

In recent years, power control and signature sequence allo-
cation were studied as tools to maximize the user capacity of
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CDMA systems [6]-[8]. In [6], the joint optimal signature se-
quence and power allocation was studied to maximize the net-
work user capacity for a synchronous CDMA system with a
MMSE multiuser receiver. The optimal solution also minimizes
the sum of the allocated powers, and simplifies the MMSE re-
ceiver to a matched filter. In [7], the optimal sequence allo-
cation and the user capacity of asynchronous CDMA systems
were derived. Other works that studied sequence selection and
power control to satisfy the SINR requirements of the users can
be found in [9] and [10].

All the studies mentioned above assume only single flow type
at each node. In wireless networks of the future, each node will
be multiplexing a variety of flows, each with its own QoS re-
quirement. One example is in a cellular network, where a user
(cellular phone) may have data, video, and audio to transmit to
other users. These three flow types clearly have different QoS
requirements. The QoS requirement is often expressed as the
required bit error rate (BER) of the received signal, which, in
turn, is a function of the SINR of the received signal. Here,
we consider a synchronous CDMA system with a base sta-
tion and IV nodes, all equipped with matched filter receivers.
At each node, there are F' flow types with SINR requirements
0 < p1 £ By <--- < Bp. Each flow type is assigned a code
with processing gain L, and they transmit simultaneously to the
base station.

If at each node, the transmitter is able to assign different
power levels to different flows, then the uplink power control
problem is actually a single flow case with N F' virtual users.
However, since usually there is only one single power amplifier
at each node (especially at the mobile node), it is natural and
simpler to assume that there is only single power level available
for all the flow types at a node. To use different power levels
for each flow will necessitate a significantly more complex de-
sign, namely one in which the power levels of the multiplexed
flow types are adjusted by appropriate weights or one in which
the same goal is achieved via baseband processing. To avoid
the additional complexity, it is useful to investigate the solution
and performance of the optimal power allocation problem under
the constraint of single and common power level for all flows.
Therefore, we assume that each node has only one transmitter,
i.e., only single power level is available for all F' flow types.
So when a node sets its power, it has to satisfy all of the SINR
requirements of its flow types. One objective of this paper is to
evaluate the performance degradation that results from this sim-
ple and inexpensive transmitter structure.

For the uplink, the first question is, for fixed codes, to de-
termine the conditions for the power control problem to have a
solution (i.e., for the SINR requirements to be satisfied). For the
special case of N = 2, we have found the sufficient and neces-
sary conditions for the power control problem to have a solution.

1229-2370/06/$10.00 © 2006 KICS



314 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 3, SEPTEMBER 2006

For the general problem (N > 2), we only have necessary con-
ditions. The next step is to solve the optimum (minimum) power
vector to satisfy all the SINR requirements. We do not have an
analytical solution to the optimal power vector, but we provide
an iterative algorithm to find it. After that, the natural question is
to search for the optimal sequences so that the total power of all
users is minimized, when the optimum power vectors are used.
Because of the lack of an analytical solution, we are only able
to give the solution for optimal sequences in the special case of
single flow.

In the downlink, the base station transmits to N nodes simul-
taneously using /V F different codes. Its power level P can be
adjusted to satisfy the SINR requirements of the users. Since
the base station only has one power level, it is relatively easy to
obtain the minimum power assignment of the base station to sat-
isfy the SINR requirements for fixed codes. Then the next ques-
tion is to search the optimal sequences to minimize that power
assignment. We do not have an exact solution to the optimal
sequences; however, we obtain some properties that the optimal
sequences satisfy.

The organization of this paper is as follows. In Section II, we
formulate the problem for the uplink and study the special cases
for F = 1 and N = 2, and the general case of ' > 1, N > 1.
In Section I, we solve the power assignment of the base station
and study the optimal sequences for the F' = 1 special case, the
N = 1 special case, and the general # > 1, N > 1 case. In
Section IV, we compare the performance achieved by the opti-
mal solution in the proposed constrained problem with the per-
formance of the same system if each flow type can have its own
power level, so as to determine the price we pay to achieve re-
duced transmitter complexity. Finally, we summarize our work
in Section V.

II. UPLINK CASE

In the uplink CDMA system, the signal received in one sym-
bol interval at the base station [11] for our multiple flow type
case can be written in the following vector form.

N F
?J:Z\/Fz Zbifsif + w.
i=1 f=1

Here, F; is the received power for each of the F' flow types of
node ¢, which is the product of the transmission power of user 4
and the attenuation factor from user 7 to the base station, &; fand
s;y are the transmitted bits and the signature sequence of flow
type f at node %, and w is the additive white Gaussian noise
(AWGN) vector with covariance matrix 27

The SINR requirements of flow type f at node 7 can be written

as
SINR; P > 3
i f = 3 —5—— 2 Pf
o2+ 2 G .o Fifirg
f:17>Fa Z=157N (1)

The quantity p;s ;, denotes the crosscorrelation between flow
type f at node 7 and flow type g at node j, that is, p;f,, =
sl £ Define the total squared crosscorrelation between flow

type f at node i and all flow types at node j as af] =
25:1 p? f.ig° then the interference term can be rewritten as

Y. Pt = ZZPJszm Piplsis

(4,9)# (. f) Jj=1lg=1
-3 ped -
j=1

and the SINR requirements become

N
P; 28;0% + B Y Pyal, — By P
ji=1
f:]_,“',F,

i=1,--,N.

Or in matrix form

P>B;AYP 4+ 80?1, f=1,--F (2)
with
0‘{1f— 1 ff"{z a;N
AP Qg1 QN
O‘{V1 a{\rz O‘{VN -1
T
P=[P P, Py |
and
1=[1 1 1]"

A. Special Case of F = 1

Now the SINR requirements can be written as
P > BAP + %1

whlle the symmetric non-negative matrix A has entries a;; =
p” for ¢ # j, and a;; = 0 for ¢ = j. For fixed sequences, this is
the typical power control problem. Our first two questions, (he
conditions for the power control problem to have a solution and
the optimal power vector, were answered in [1]-[3].

If 8 < 1/pa, then a solution exists. Here, p4 is the largzst
eigenvalue of matrix A (Perron-Frobenius eigenvatue [12]).
Therefore, the feasible 3 satisfies 3 < 1/pa and the optlmum
power vector is given by

P* =d?8(I - BA)~11.
We then use these results to find the optimal sequences to nrin-
imize the total power 17 P*, assuming that the optimal povier
vector is always used for whatever sequences. The minimizza-
tion by the sequence assignment now reduces to the problim
of ming (17 (1 — BA)~ '1). Here, § = [s1 s5 -+ sn] is {he
matrix that consists of N column sequence vectors.
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Using the properties of matrix (I — SA), we have (Ap-
pendix A)

(1T(I-pA)N)- (17T -pA)™1) > N2 3)

The equality is achieved when Zjvzl pii—1=01~7)/8, i=
1,---, N, is true for some constant ~.

For N = 2, the Welch bound of the total squared correla-
tion is given by [13] and [14] Zivzl Z;V=1 p?j > N?/L, and the
sequences that achieve the bound is called Welch bound equal-
ity (WBE) sequences. Notice that the WBE sequences, which
obey §ST = (N/L)I,and )| p2, = N/L, i=1,---,N,
achieve equality in (3) with v = 1+ —3N/L. From the Welch
bound, we also have

N N
I -BAN=N-B[>" > p} —N

i=1 j=1
<SN(1+p8-pN/L). “

Using (3) and (4) in succession yields the following minimum
achieved by WBE sequences

Pyotal = 8”11 — BA)™'1 > No?/(1+1/8 - N/L).

For N < L, orthogonal sequences satisfy (3) with v =
1, and it achieves the lowest total crosscorrelation, i.e.,
PR Z;\;l p3; > N. Thus we have Py, = NBo2.

Proposition 1: For N > L, the optimal sequences that min-
imize the total power in an uplink power-controlled CDMA
system with SINR requirement 3 are the WBE sequences and
the corresponding optimum power vector is given by P =
0?/(1+1/8 — N/L)1. For N < L, the optimal sequences
are orthogonal with optimum power vector P = (So21.

Since the power allocation for N > L case should be positive,
we have N/L < 1+ 1/3. Therefore 1 + 1/8 is the maximum
number of users per degree of freedom the system can hold,
provided the SINR requirement (3 is satisfied. It is the so-called
user capacity for the uplink CDMA system with matched filter
receiver.

The above conclusions about the optimal sequences, the opti-
mum power vector, and the user capacity of the uplink CDMA
system with a matched filter were first given in [6]. We include
this special case discussion here, although the solution is known,
to illustrate our different methodology. Specifically, in [6], the
power and sequence assignment were jointly optimized to max-
imize the user capacity for a synchronous CDMA system with
linear MMSE multiuser receiver. Then the optimal sequences
were found to be the WBE sequences, which also minimize
the total power. Moreover, the MMSE receiver for the optimal
sequences and optimum power assignment was found to be a
matched filter. Here, we first optimize the power vector for any
fixed sequences; then we optimize the sequence assignment for
a CDMA cell (which uses the optimum power vector) to mini-
mize the total power.

B. Special Case of N = 2

We now study the case of two nodes because it is the simplest
case that reveals the different character of our problem. Up to

now, we have assumed that there are F' flow types, and they
are common to all nodes. In this subsection, we remove this
assumption and look at the more general case when the numbers
of flow types at each node are different. We assume that there
are Fy flow types with 0 < 811 < 12 < --+ < By, at node 1;
and there are F5 flow types with 0 < 831 < 92 < -+ < fBop, at
node 2. The conclusion in this subsection applies to the special
case with F' common flow types if we replace F; and F} with
F, and replace 3,y and B9 with 5.

Now the SINR requirements for the flow types at nodes 1 and
2 are as follows:

Py > Bigo® + isPilad, — 1) + By Paad,

with
Fl F2
2 f 2 —
ofy = Zplf,lw Q1 = Zf’lf,zga f=1-h
9=1 g=1

and
P, > Bapa® + /82fP2(O‘£2 -1)+ /3sz104£1

with
F1 FQ
2 2
0‘51 = szmga a£2 = Zp2f,zga =1 F.
g=1 g=1

Because of the non-negativity of o

;j» if a positive solution
(P1, P2) exists, then we must have

Pi(1+1/Bij — o)) > 0?4+ Pady >0, f=1,-- F
and
Po(1+1/82p —ady) > 0? + Pad, >0, f=1,---, F,.

Therefore, we have the following necessary conditions in or-
der for the problem to have a solution

of <14+1/8;, f=1,--F, (5)

Ol£2<1+1/,3f,f:1,"',F2. (6)

Let us rewrite the SINR requirements as

P >a;+b;P, f=1,---, Fy

where
o2 a{z
af= 7 b= 7
1—|—1/ﬂ1f—au 1+1/,81f—a11
and
Py ZCf‘FdfPl,f: 1,---, Fy
where
Cf 02 df agl

1+1/ﬁ2f—a§£2’ 1+1/ﬁ2f~a£2'
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Fig. 1. When 1/by < dy is true, feasible area of flow type 1 is always
above the feasible area of flow type 2, hence the two solution areas
do not overlap.

If (5) and (6) are satisfied, these coefficients defined above
are either positive or non-negative. On the (P, P») plane, the
straight lines P = ¢y + d¢ P, and P| = ay + by P, have non-
negative or positive slopes and intersections. Furthermore, the
SINR requirements can also be written as

P) Z f::rfl,é‘-},{Fl (af + bfpg) (7)
®

P> d;Py).
> 2 Ipang (e drhy)

The region defined by (7) is the infinite area to the right of
lines Py = ay + by, f = 1,---, F. Its behavior when 7
and [ are large enough is determined by the minimum slope
ming~y,.. r, (1/b). The area defined by (8) is the infinite area
above lines P = ¢y +ds Py, f = 1, -+, Fy. Its behavior when
Py and P, are large enough is determined by the largest slope
maxy—1,... p, dr. If a solution exists, the power vectors that sat-
isfy the SINR requirements are in the overlapped area of (7)
and (8). Therefore, the existence of a solution can be com-
pletely determined by these coefficients, namely the values of
maxysg—=j .. F, df and m'mley...,Fl (1/bf).

Proposition 2: In the N = 2 uplink power control problem
with SINR requirements 0 < 317 < Big < --- < By, at node
Land 0 < 91 < B2 < -+ < [z, at node 2, a solution exists

if and only if
of, <1+1/8;, f=1,-- F
a£2 <1+1/ﬂf} f:17"'aF2
and
1.
p Iy by e dp < ®

Proof: The solution set A can be described as

Pr>ap+bePy, f=1,--,

Py,
A:{(PI,P2>>D. P ciidiPr fe1 Py }

Necessity: Suppose (5) and (6) are not satisfied, then there
is no solution. Suppose (5) and (6) are satisfied, but (9) is not

Py=a,tbyf, Py=cy+d,P,

1
it =a+b P,

<
po——
Cil g >
—
/ 7a2 Pl

Fig. 2. When 1/b; < dz is true, feasible area of flow type 1 is always
under the feasible area of flow type 2, and there is no overlap of thise
2 areas.

satisfied, then there exist at least one pair of & and g (b # g)
such that 0 < 1/b, < d,. From the non-negative property of
the coefficients, for any P; > 0, we have cg+dy Py > —an/bj,+
P, /by, Then

{(P,P)>0: P, > cg +dyPi, and Py > ap + bp Py}
= {(Pl,Pg) >0 cg + dePy <P < ~ah/bh + Pl/bh}
=. ' f

Since solution set A is a subset of this set, the solution se is
also empty, i.e., no solution exists.
Sufficiency: Suppose (5), (6), and (9) are all satisfied. Frora

(Jmax af+P2 max_ by >as+bsP, f=1,-- F

=1, P

pmax cy + 01 maxF dy > cp+dsPy, f=1,---, F
1, F

J'; P

we have
b > jmax af +P2f max bg,
D : =L, 1 PARRE TN |
A2 (B F) >0 P > max c,c+P1 Jpax dy
f=1,-,F2 L Fy
max Cf+P1 max_dy < P,
=1, F3 =1,--,F2
=< (A, ) >0: < (P1 maxf,l’ P OF
maxys—i,..rp, bs
# 0.

The last step is justified because

Py —maxyg_y..F 0f

c,+P; max dr <
f—l F ! 1 =1,y f maxy—q,.. p bf
is guaranteed when P is large enough, speciﬁcally, when

max ¢ m a b
p o O Y T ag) T, by
! 1/ maxF by — ; max dy

Loy By f=1,F

> 0.
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Fig. 3. The case d; < 1/b2 < 1/b;(the larger slope of the solution area
of flow type 2 is between the smaller and larger slopes of the solution
area of flow type 1.

The last part “>> 0” follows from (9) and the non-negative prop-
erties of the coefficients. a

To illustrate the idea, we give examples of the power control
problem with N = 2 and F' = 2, in Figs. 1-4. In the figures, the
feasible area of flow type 1 in 2.D (P, P») space is the shaded
area, and the feasible area for flow type 2 is the slanted area. In
order for flow type 1 to be feasible, we need to have 1/b; > d;.
Similarly, we require 1/b2 > dy for flow type 2. Whether the
two feasible areas of flow types 1 and 2 overlap depends on the
value of the coefficients defined above. Figs. 1 and 2 illustrate
why 1/by > dy and 1/by > dy are necessary conditions for
both flow types to have solutions simultanecusly. When these
are satisfied, there are two possible cases shown in Figs. 3 and
4,

The optimum power vector P* is obtained at the intersec-
tion of curves Pi = maxs—;..p(af + byPp) and Py =
maxs—1,.. m,(cf + dfP1). An iterative algorithm can be used
to find the minimum power solution in this fixed-point problem.
Namely

PV = max (ay +b;P0) (10)
f=1 R
(i+1) (i)
Py = f:r?,%i{Fz(cf +dyPy). (11)

The proof of the convergence is discussed later in Section II-
C.

C. General Case of N > 1

For the general case of N > 1 with F' common flow types
at each node, the SINR requirements (2) can be written as P >
I(P) if we define the interference function I(P) as

I:(P) = Fpax {6f<A(f)P)i + ,Bfgz} ,i=1,--- N.
az)

Fig. 4. Thecased; < 1/b; < 1/bs (the larger slope of area 1 is between
the smaller and larger slopes of area 2).

If a solution exists, the problem is to find the minimum P,
such that P > I(P) is satisfied. The iterative algorithm we
used in (10) and (11) can be written as POt = I(P(i)).

We use the conclusions from [4] to prove the convergence of
the algorithm. Reference [4] defined an interference function
I(P) to be standard if for all P > 0 - 1, it satisfied positivity
(i.e., I(P) > 0-1), monotonicity (i.e., if P > P’, then I(P)>
I(P')), and scalability (i.e., for all &« > 1, aI(P) > I(aP)).

It was shown that if there is a fixed point, then it is unique
and it is the optimum power vector (component-wise minimum).
Furthermore, if P > I(P) has a solution, then, for any ini-
tial power vector P, the power control algorithm with standard
I(P) converges to the optimum power vector P*. Since the
proof of convergence was given in {4], we only need to ver-
ify here that the interference function defined above is standard.
This can be verified in a straightforward way.

Proposition 3: If a solution to P > I(P) exists, the al-
gorithm PO+Y) = 1 (P®) with the interference function de-
fined in (12) converges to the optimum power vector P*. (Ap-
pendix B).

This iterative power control converges very fast to the mini-
mum power vector. As shown in [5], the standard power control
algorithms converge at geometric rate.

Now, we discuss the existence of the solution for the general
case of N > 1. Similarly to the N = 2 case, we have the
following necessary condition from the positivity of the power
vector.

Proposition 4: If the uplink power control problem for N >
1 with SINR requirements 0 < §; < 3, < --- < Bp has a
solution, then

azfi<1+1/ﬂfa f=1--F i=1,--,N.

Let us assume that these necessary conditions are satisfied.
Then we wish to determine under what condition a solution
exists. In the N-dimensional space (P, P,---, Py), the re-
quirements are not as clearly seen as in the 2-dimensional space
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(P, P;). We have not obtained a complete answer to the ques-
tion of the existence of the solution. However, we can relate the
N > 2 case with the N = 2 case and obtain some insights in
the form of necessary or sufficient conditions.

For a necessary condition, we construct a simplified, easier
N = 2 problem from the original problem by assuming that all
other nodes have zero SINR requirement except nodes 4 and j.
Then only 2 inequality sets for P; and P; are leftin P > I(P).
If P is a solution of the original problem, then Z (7, j) - P (Z
is an N x N zero matrix, except Z;; = Z;; = 1) is a solution
of this simplified N = 2 problem. Therefore, one necessary
condition for the original N > 2 problem to have a solution is
that any simplified V = 2 problem, as described above, satisfies
MaXf=1,....F bf rmaxf—y .. F df < 1.

For a sufficient condition, we construct a more difficult N =
2 problem by adding more constraints. Let us partition the N
nodes into two distinct sets, one with Ny nodes iy, iz, - -, iy,
and the other with Ny nodes ji, j2, - - -, jn,, (N = N1 + No).
Let the nodes in set 1 have the same power P; and the nodes
in set 2 have the same power P,. Set 1 has a total of N1 F
flow types and set 2 has a total of NoF flow types. Then the
flow types in set 1 and set 2 can be re-indexed, and the « factor
and coefficients a, b, ¢, and d can be defined as in the N = 2
case. If the constraint N = 2 problem has a solution [P; P]T,
then the power vector whose i1, @2, - - -, 7y1 elements are P; and
whose ji, j2, - -, jv2 elements are P; is a solution for the orig-
inal problem. Therefore, one sufficient condition for the orig-
inal problem is that any constrained N = 2 problem satisfies
maxys=y,..Fby maxs_;.. pdy <1

For the general case of V > 1 with different flow types, the
SINR requirements in (1) should be modified to the following
form

P, > figo? + BiPilod, — 1) + 8 S Py,
i#i
i:l’...’N’ f:]_,...,Fi_

The interference is separated into two terms, interference
from flow types in the same node, and the interference from
other nodes. Proposition 3 holds if the interference function is
defined by

I,(P) =

max
f=Lon s

,Bif (0’2 + Pl(alfl - 1) + ZPJQ‘Z)
i

F;
alf] = Zp?fnjg’ Z = 1, o .’N. (13)
9=1

III. DOWNLINK CASE

In the downlink case, the base station transmits to all the flow
types at all the nodes simultaneously. Its power level P can be
adjusted to satisfy the SINR requirements of all the flow types
at all the nodes. We assume that the attenuation factors from the
base station to the nodes are the same.

The SINR requirement of flow type f at node 7 is given by

P
2 2
o2+ Gk P Pirg
f=1,--F i=1,--- N.

SINR, ; = > B;

Define the total squared crosscorrelation between flow type
f at node ¢ and all flow types at all nodes as a;; =

Z;\le 25:1 P ;,- Then the SINR requirements become
UQ/PS 1+1/6f_alf7 f:17-~-’F’ Z: 1,7N

Since the power level P is positive, the following conditicns
must be satisfied in order for the problem to have a solution

maxaif<1+1/,8f, f=1,--F (14)
Then the minimum power is given by
2 :
P = 2 (15)

ming (14 1/8; — max; a;f)

Now, we wish to minimize P* by selecting appropriate fse-
quences; that is

max <mfin(l +1/6f — maxaif)> (16)
7
N F
ais =3 D (siy 85)"
j=1g=1
Here, 8 = [s11, -, 81F, ", 8N1, -+, SN F] is the matrix that

consists of NF' column sequence vectors. The optimal se-
quences to minimize the power are now derived from a max-min
problem. We will first discuss this problem for the special case
of F' = 1, then for the special case of N = 1, and finally for rhe
general case of N > 1and F > 1.

A. Special Case of F = 1

For F' = 1, problem (16) becomes ming max; Zjvzl pfj. Tor
N < L, obviously max; E;V:I p?j > 1 holds, and the minimiim
power is obtained by orthogonal sequences. For N > L, we

have

The first inequality holds because the maximum value is al-
ways greater than or equal to the average, and the second is a
consequence of the Welch bound of total squared crosscorrela-
tion [13], [14]. The WBE sequences achieve both equalities.

Proposition 5: For N > L, the optimal sequences that min-
imize the power in a downlink CDMA system with SINR re-
quirement 3 are the WBE sequences and the minimum power
assignment is P* = 02/(1+1/8 — N/L). For N < L, the op-
timal sequences for this problem are the orthogonal sequenizes
with P* = 0243,

For the N > L case, 0 < P* < oo implies that N/L <
1+ 1/(. This is the maximum number of users per degree of
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freedom the system can have, provided the SINR requirements
are satisfied. It is equal to the user capacity for the downlink
CDMA system that uses matched filter receivers. Notice that
this result is the same as in the uplink case.

B. .Special Case of N =1

For N = 1, both the downlink and the uplink are simple
point-to-point links. We have oy = __ p%,, and the problem
(16) becomes maxg ming(1 4+ 1/8f — af).

If F < L, we have oy > 1, with orthogonal sequences
achieve the equality. Hence

min(l+1/6s — ay) < H}in(l/ﬁf) = fr

and the minimum power is given by P* = Bro?.

If F > L,itis difficult to get an exact analytic solution. Here,
we find some properties that the optimal sequences must sat-
isfy. If F' codes are available with oy 2> a9 > --- > ap,
then the question is how to assign these F' codes to the F flow
types so that ming (1 + 1/35 — a(y)) is maximized. Let no-
tation ¢(f) represent the code that is assigned to flow type f.
We find that the code with the least correlation (i.e., the code
with minimum «) should be assigned to the most demanding
flow type (i.e., the flow type with maximum 3} and the code
with the highest correlation (i.e., the code with maximum o) to
the least demanding flow type (i.e., the flow type with minimum
3). This assignment is always better than or at least as good as
other assignments. Therefore, when we search for the optimal
sequences, we can limit the search to the code sets that satisfy
oy > ag > -+ - > ap without missing the optimum power.

Proposition 6: There is at least one optimal set of sequences
which maximize ming (1 4+ 1/85 —as) O <1 < B <+ <
Br) and that has the following property (Appendix C)

Q> 0y > 2> ap.

Using the definition of ¢;, we can transform the condition for
o into conditions that p;; must sausfy when F' is small. For
=3, thls property 1mphes p12 > pfy > pl5. For F = 4, it

implies pfy — p3y > Pl — phy 2 }/)23 —pl4| > 0.For F > 5,
we were not able to obtain similar simple analytic conditions.

C. General Case of N > land F > 1

For the general case of N > 1 and £ > 1, similarly to
Proposition 6, we have the following property of the optimal
sequences.

Proposition 7: There is at least one optimal set of sequences
which maximize min (14 1/8; — max; a5} (0 < fy < f2 <
- < Bp) and that have the following property (Appendix C)
Max &1 > ax o > s > AKX OGR.

From this conclusion, we know that at least one optimal set
of sequences will assign the NV sequences with largest value of
« to the flow type 1 (any permutation is fine within these N
sequences), the next N sequences with next largest value of o
to flow type 2, and so on.

IV. EFFECT OF THE SINGLE POWER LEVEL
CONSTRAINT

In this paper, we assume that all flow types at each node have
the same power level. This constraint simplifies the transmitter
structure; on the other hand, it may degrade the system perfor-
mance. In this section, we examine the performance degrada-
tion by comparing the performance of the system with this same
power level constraint {constrained problem) 1o that of the sys-
tem without this constraint {unconstrained problem).

The unconstrained problem is a synchronous CDMA system
with one base station and N # nodes. The N F separate power
levels satisfies

Pij > Bso* +ﬁfzz Pjghir o) — BrPis

j=1g=1
le’ F i=1,--,N.

For the uplink if power vector P = [Py, Py,---, Py|T isa
solution of the constrained problem, then the power vector P ®
1. 7 is a solution of the unconstrained problem. (Notation P ®
1, « r is the Kronecker product, which denotes the vector whose
i-th element is replaced by P; - {1,-+-, 1]{, ). Therefore, if
solutions exist for the constrained problem, then solutions must
also exist for the unconstrained problem. The contrary is not
true.

If solutions exist to both problems, assume that the optimum
power vectors of the constrained and unconstrained uplink prob-
lem are P* and P, respectively. Since P* ® 11, p is a solution
of the unconstrained probiem, from the property of the optimum
power vector, we have P* @ 11, p > T herefore, minimum
total power of the constrained probiem is always larger than oy
equal to that of the unconstrained problem.

To see how large the performance difference is between the
constraint and uncoustrained system, we give one analytical ex-
ample and one numerical example below.

Example of N = 1 and F' = 2: One user has two flow types
with SINR requirements 5; < (,, and the cross-correlation be-
tween the two sequences is p. For the constrained problem, the
snfficient and necessary conditions to have a solution can be ob-
tained from (14)

1

1
,81 < p—j and ,62 < ‘0‘2‘ (17)

and the minimum total power can be obtained from (15)

2023,
1—p*82
For the unconstrained problem, the condition to have a solu-
tion can be obtained from the Perron-Frobenius eigenvalue

B total =

1
B1P2 < e (18)

and the minimum total power is given by

2

~ a
Piotal = m(ﬂl + 8o+ 0B + p753).
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Table 1. Comparison of the power control problem with and without the
constraint of single power level (N = 3, F = 2, L = 20).

Number of times in B, =101 B;, =20
100 simulations that Ba=151] B,=3.0
Power ratio if in [1.0,1.2) 11 4
Power ratio if in [1.2,1.4) 69 23
Power ratio if in [1.4, 2.0) 16 23
Power ratio if in [2.0, 10) 2 21
Power ratio if in {10, co) 2 12
Only unconstrained problem 0 13
has solutions

Neither problem has solutions 0 4

Comparing (17) and (18), it is obvious that (18) defines a
larger region for (f1, B2), i.e., it is easier for the unconstrained
problem to have a solution.

From 1 < B, we always have Ptotal > ptotal’ ie., the
constrained problem needs larger total power.

Numerical example: Let N = 3, F = 2, and L = 20. We
generate N F' random sequences from random variable V;; (41
or —1 with half probability) as s; = [Vi1, Vi, -+, Vig], ¢ =
1,---, NF. Then we solve iteratively the constrained and un-
constrained power control problem. Each time we run the pro-
gram, a new set of sequences is generated, and the correspond-
ing power control problems are solved and the results for both
problems are compared. We define the power ratio as the ratio
of the total power needed for the constrained problem to that for
the unconstrained problem.

Basically, the performance difference between the con-
strained and unconstrained problem depends on the SINR re-
quirements and the degree of sequence correlation. For SINR
requirements 5; = 1.0 and G, = 1.5, we run the program 100
times. Both problems have solutions every time, and the power
ratio is between 1.0 and 1.4 most of the time (in about 80% of
the cases). Please refer to Table 1 for the details. For stricter
SINR requirements, e.g., 31 = 2.0 and 2 = 3.0, we also run
the program 100 times. There are 4 times for which no solution
exist for either of the two problems. There are 13 times that only
the unconstrained problem has a solution. For the remaining 83
times, both problems have a solution. This again confirms that it
is easier for the unconstrained problem to have a solution. When
both of the problems have a solution, the power ratio varies more
widely, with an average value close to 2.

V. SUMMARY

We studied the problem of a power-controlled CDMA system
with N nodes and F' flow types with the constraint that each
node uses the same power level for all flows that it multiplexes.
We revisited the single flow case, and rederived the same re-
sults as in {6] about the optimum sequence and user capacity but
with a different method. For the uplink problem with N = 2,
we found and proved the necessary and sufficient conditions to
have a solution. For the general N > 1 uplink problem, we
provided an iterative algorithm to find the optimal solution and
derived conditions that the optimum sequence must satisfy. For
the downlink case with F' > 1, some properties of the opti-

mal sequences were also derived. Finally, the single power level
constraint, which simplifies the transmitter structure, causes a
performance degradation that was assessed in some examples.

APPENDICES

A. Proof of (3)

Matrix A is real and symmefric, so it can be diagoral-
ized to A = UA AUT. Here, U is a unitary matrix (i.e.,
v = U'U = I), and A4 is a diagonal matrix, whose
diagonal elements are equal to the real eigenvalues of A. Define
G = I — BA. Then, G can be diagonalized to G = UAUT,
with A = I — BA 4. From the feasibility assumption on 3, (i.e.,
B < 1/pa), the diagonal elements of A (eigenvalues of G) are
all positive. So G and G are positive definite, and they ¢an
be written as G = UA*AU T and G~1 = UA 3 AU .
Then, by the Cauchy-Schwartz inequality, we have

1'e1)(1'G™M)
= [atuTyTatuTy)- [(A—%UH)T(A—%UH)]
1 1 2
> l(AfUTl)T - (A‘EUTl)\
=171
= N2,
The condition to have equality is AU = 7A_%U T1, for

some constant y. This means that G = v1 and A1 = [(1 —
v)/B]1; i.e., the row summation of matrix A is a constant. Then

|

N
1—7
2 _
Zpij -1= 8
i=1

, ¢=1,--. N, forsome constant -y.

B. Proof of Proposition 3

The positivity property follows directly from the non-
negativeness of matrix A ).
For the monotonicity property, assume P > P’, then we have

I(P) = max {849 . P+ o1}
. p 2
meax{BfA P’ 4+ B0 1}
= I(P).
For scalability, assume « > 1, then
aI(P) = max [aprAD . P+ afpo®1}

> max {5fA<f> (aP) + ﬁfah}
= I(aP).

Therefore, I(P) defined in (12) is standard. Using the main
theorem from [4], the iterative algorithm POV = 1(p®)
converges to the optimum power vector P*.

The proof is similar to the I(P) defined in (13).
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C. Proof of Propositions 5, 6, and 7

We use notation (7, 7, - - -) to imply the assignment that code
@ is assigned to flow type 31, code j is assigned to flow type
B2, and so on. We want to select the assignment to maximize
f@,3,-++) = min(1/81 — @i, 1/B2 — «j, - - -). We will use the
following lemma.

Lemma: if 0 < 8; < 8; and o; > «;, then

mm(l/,@z — ai,l/[)’j — Oéj) Z mm(l/,@z - aj,l/ﬁj — Ozi).

(Proved immediately by using 1/8; —a; > 1/8;—a;, 1/8; —
a; > 1/B; —ai,and 1/8; — aj > 1/8; — a).

We start from F' = 2. Suppose there are 2 codes with oy >
oz and 2 flow types with 0 < 3, < (5. We want to maximize
f(i,5) = min(1/B1 — o4,1/B2 — ;). Using the lemma, we
have :

min(l/ﬁl — Qy, 1/,82 — a2) Z min(l/ﬂl — (9, 1/,82 — 041).

Therefore, for F' = 2, assigning codes to flow types (indexed
in an increasing order of ) in the order of decreasing crosscor-
relation o is better than, or equal to, any other assignment.

Now consider F' = 3 with 3 codes oy > s > ag and 3
flow types with SINR requirements 0 < 3; < 35 < f35. Conse-
quently, using the conclusion of F' = 2, we have

f(1,2,3) =min(1/81 — a1,1/82 — a2,1/85 — as)
min(1/8; — a1, min(1/82 — as,1/83 — as))
min(1/8; — a1, min(1/8s — a3, 1/8s — az))
£(1,3,2).

Similarly, we show that f(1,2,3) > f(2,1,3) > £(2,3,1)
and £(1,3,2) > £(3,1,2) > £(3,2,1).

Therefore, f(1,2,3) is the maximal assignment among all 6
possible ones, i.e., for F' = 3, assigning codes to flow types
(indexed in an increasing order of 3) in the order of decreas-
ing crosscorrelation « is better than, or equal to, other possible
assignments.

Then assume that for F' = n the proposition is true, that is

f(172:"':n) Zf(ihi%"

is true for any permutation (41, 42, - - -, 95, ).

Using the same procedure as above, we prove that the propo-
sition is true for F' = n + 1.

Hence, the induction process implies that for any F' flow types
with 0 < B; < B < -+ < Bp, there is at least one optimal set
of codes that have the property oy > g > --- > ap.

We can use the same induction process to prove Proposition 7,
by changing orf to max; a;¢.

\Y
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