• 제목/요약/키워드: Multivariate statistics analysis

검색결과 324건 처리시간 0.025초

Residuals Plots for Repeated Measures Data

  • 박태성
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.187-191
    • /
    • 2000
  • In the analysis of repeated measurements, multivariate regression models that account for the correlations among the observations from the same subject are widely used. Like the usual univariate regression models, these multivariate regression models also need some model diagnostic procedures. In this paper, we propose a simple graphical method to detect outliers and to investigate the goodness of model fit in repeated measures data. The graphical method is based on the quantile-quantile(Q-Q) plots of the $X^2$ distribution and the standard normal distribution. We also propose diagnostic measures to detect influential observations. The proposed method is illustrated using two examples.

  • PDF

2000년 미국대선 플로리다주의 투표결과 분석 (Statistical Outliers in Florida Counties at the Presidential Election 2000)

  • 김현철
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.21-32
    • /
    • 2002
  • We searched out in the votes data of the State of Florida at presidential election 2000. We used a multivariate regression analysis. We got there were several outliers including Palm Beach County. It means that we should analyze the number of disqualified ballots which were double-punched as well as the votes, to insist the " Butterfly Ballot" made Palm Beach outlier.

Diagnosis of Observations after Fit of Multivariate Skew t-Distribution: Identification of Outliers and Edge Observations from Asymmetric Data

  • Kim, Seung-Gu
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1019-1026
    • /
    • 2012
  • This paper presents a method for the identification of "edge observations" located on a boundary area constructed by a truncation variable as well as for the identification of outliers and the after fit of multivariate skew $t$-distribution(MST) to asymmetric data. The detection of edge observation is important in data analysis because it provides information on a certain critical area in observation space. The proposed method is applied to an Australian Institute of Sport(AIS) dataset that is well known for asymmetry in data space.

Constructing Simultaneous Confidence Intervals for the Difference of Proportions from Multivariate Binomial Distributions

  • Jeong, Hyeong-Chul;Kim, Dae-Hak
    • 응용통계연구
    • /
    • 제22권1호
    • /
    • pp.129-140
    • /
    • 2009
  • In this paper, we consider simultaneous confidence intervals for the difference of proportions between two groups taken from multivariate binomial distributions in a nonparametric way. We briefly discuss the construction of simultaneous confidence intervals using the method of adjusting the p-values in multiple tests. The features of bootstrap simultaneous confidence intervals using non-pooled samples are presented. We also compute confidence intervals from the adjusted p-values of multiple tests in the Westfall (1985) style based on a pooled sample. The average coverage probabilities of the bootstrap simultaneous confidence intervals are compared with those of the Bonferroni simultaneous confidence intervals and the Sidak simultaneous confidence intervals. Finally, we give an example that shows how the proposed bootstrap simultaneous confidence intervals can be utilized through data analysis.

A Resetting Scheme for Process Parameters using the Mahalanobis-Taguchi System

  • Park, Chang-Soon
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.589-603
    • /
    • 2012
  • Mahalanobis-Taguchi system(MTS) is a statistical tool for classifying the normal group and abnormal group in multivariate data structures. In addition to the classification itself, the MTS uses a method for selecting variables useful for the classification. This method can be used efficiently especially when the abnormal group data are scattered without a specific directionality. When the feedback adjustment procedure through the measurements of the process output for controlling process input variables is not practically possible, the reset procedure can be an alternative one. This article proposes a reset procedure using the MTS. Moreover, a method for identifying input variables to reset is also proposed by the use of the contribution. The identification of the root-cause parameters using the existing dimension-reduced contribution tends to be difficult due to the variety of correlation relationships of multivariate data structures. However, it became possible to provide an improved decision when used together with the location-centered contribution and the individual-parameter contribution.

On the second order property of elliptical multivariate regular variation

  • Moosup Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권4호
    • /
    • pp.459-466
    • /
    • 2024
  • Multivariate regular variation is a popular framework of multivariate extreme value analysis. However, a suitable parametric model needs to be introduced for efficient estimation of its spectral measure. In such a view, elliptical distributions have been employed for deriving such models. On the other hand, the second order behavior of multivariate regular variation has to be specified for investigating the property of the estimator. This paper derives such a behavior by imposing a widely adopted second order regular variation condition on the representation of elliptical distributions. As result, the second order variation for the convergence to spectral measure is characterized by a signed measure with a regular varying index. Moreover, it leads to the asymptotic bias of the estimator. For demonstration, multivariate t-distribution is considered.

다차원척도법과 거리분석을 활용한 그룹화된 비유사성에 대한 비모수적 접근법 (Non-parametric approach for the grouped dissimilarities using the multidimensional scaling and analysis of distance)

  • 남승찬;최용석
    • 응용통계연구
    • /
    • 제30권4호
    • /
    • pp.567-578
    • /
    • 2017
  • 일반적으로 그룹화된 다변량자료는 다변량 분산분석(multivariate analysis of variance; MANOVA)을 사용하여 그룹 간 차이를 검정할 수 있다. 그러나 만약 다변량 분산분석의 기본적인 가정이 위배되면 이 방법은 적절하지 못하다. 이 경우 다양한 거리로부터 그룹화된 비유사성을 계산한 후 다차원척도법(multidimensional scaling; MDS), 거리분석(analysis of distance; AOD) 그리고 비모수적 기법인 순열검정(permutation test)을 적용하여 문제를 해결할 수 있다. 다차원척도법은 비유사성으로부터 개체들의 좌표를 계산해주며 거리분석은 이 좌표를 활용하여 그룹구조를 파악하는데 유용하다. 특히 비유사성의 측도로 유클리드 거리를 사용하면 거리분석은 다변량 분산분석과 수리적으로 매우 밀접한 연관관계를 맺는다. 따라서 본 연구에서는 그룹화된 비유사성에 다차원척도법과 거리분석을 적용하여 그룹 내와 그룹 간의 구조를 파악하고 순열검정을 위한 새로운 검정통계량을 제안하려 한다. 덧붙여 유클리드 거리를 활용한 비유사성을 통해 거리분석과 다변량 분산분석과의 수리적 연관성을 고찰하고자 한다.

국민건강영양조사 자료의 복합표본설계효과와 통계적 추론 (Complex sample design effects and inference for Korea National Health and Nutrition Examination Survey data)

  • 정진은
    • Journal of Nutrition and Health
    • /
    • 제45권6호
    • /
    • pp.600-612
    • /
    • 2012
  • Nutritional researchers world-wide are using large-scale sample survey methods to study nutritional health epidemiology and services utilization in general, non-clinical populations. This article provides a review of important statistical methods and software that apply to descriptive and multivariate analysis of data collected in sample surveys, such as national health and nutrition examination survey. A comparative data analysis of the Korea National Health and Nutrition Examination Survey (KNHANES) was used to illustrate analytical procedures and design effects for survey estimates of population statistics, model parameters, and test statistics. This article focused on the following points, method of approach to analyze of the sample survey data, right software tools available to perform these analyses, and correct survey analysis methods important to interpretation of survey data. It addresses the question of approaches to analysis of complex sample survey data. The latest developments in software tools for analysis of complex sample survey data are covered, and empirical examples are presented that illustrate the impact of survey sample design effects on the parameter estimates, test statistics, and significance probabilities (p values) for univariate and multivariate analyses.

Discriminant analysis using empirical distribution function

  • Kim, Jae Young;Hong, Chong Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1179-1189
    • /
    • 2017
  • In this study, we propose an alternative method for discriminant analysis using a multivariate empirical distribution function to express multivariate data as a simple one-dimensional statistic. This method turns to be the estimation process of the optimal threshold based on classification accuracy measures and an empirical distribution function of data composed of classes. This can also be visually represented on a two-dimensional plane and discussed with some measures in ROC curves, surfaces, and manifolds. In order to explore the usefulness of this method for discriminant analysis in the study, we conducted comparisons between the proposed method and the existing methods through simulations and illustrative examples. It is found that the proposed method may have better performances for some cases.

A multivariate latent class profile analysis for longitudinal data with a latent group variable

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.15-35
    • /
    • 2020
  • In research on behavioral studies, significant attention has been paid to the stage-sequential process for multiple latent class variables. We now explore the stage-sequential process of multiple latent class variables using the multivariate latent class profile analysis (MLCPA). A latent profile variable, representing the stage-sequential process in MLCPA, is formed by a set of repeatedly measured categorical response variables. This paper proposes the extended MLCPA in order to explain an association between the latent profile variable and the latent group variable as a form of a two-dimensional contingency table. We applied the extended MLCPA to the National Longitudinal Survey on Youth 1997 (NLSY97) data to investigate the association between of developmental progression of depression and substance use behaviors among adolescents who experienced Authoritarian parental styles in their youth.