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Abstract
In research on behavioral studies, significant attention has been paid to the stage-sequential process for mul-

tiple latent class variables. We now explore the stage-sequential process of multiple latent class variables using
the multivariate latent class profile analysis (MLCPA). A latent profile variable, representing the stage-sequential
process in MLCPA, is formed by a set of repeatedly measured categorical response variables. This paper proposes
the extended MLCPA in order to explain an association between the latent profile variable and the latent group
variable as a form of a two-dimensional contingency table. We applied the extended MLCPA to the National
Longitudinal Survey on Youth 1997 (NLSY97) data to investigate the association between of developmental pro-
gression of depression and substance use behaviors among adolescents who experienced Authoritarian parental
styles in their youth.

Keywords: categorical latent variable, latent class analysis, latent stage-sequential process, lon-
gitudinal data, recursive EM algorithm

1. Introduction

Latent class analysis (LCA) is one type of finite mixture model that can be applied for a set of discrete
response random variables. It summarizes the structure of population distribution by defining several
partitions of population (latent classes) which cannot be observed directly. The latent class member-
ship may be discovered by identifying a small number of representative response patterns of manifest
variables. The LCA framework has been expanded to be utilized for more complicated data structures
such as repeatedly measured data (Chung et al., 2011), vectorized joint structure (Jeon et al., 2017),
and a hierarchical group-outcome structure (Lee and Chung, 2017).

A new type of LCA has been proposed in this article to deal with a latent group variable in a
multivariate latent class profile analysis (MLCPA). Suppose that we have several sets of categorical
item response variables that are repeatedly measured across the time stages. One set of item variables
defines a discrete latent group variable via conventional LCA framework called a ‘latent group vari-
able.’ The other sets of item response variables discover a sequence of multiple latent class variables
to divide the population into homogeneous subgroups of those who have similar sequential patterns
of latent class membership. We call this sequence of latent class variables a ‘latent profile variable’.
Individuals with same latent profile membership will show similar sequential patterns for each latent
class variable over time. Further, our proposed model reveals the association between the latent profile
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variable and the latent group variable using the conditional prevalence of latent profiles given in the
latent group membership.

Parenting styles had been defined as four major categories: indulgent, permissive, authoritative,
and authoritarian with respect to the characteristics of parent’s distance and responsibilities toward
children (Maccoby and Martin, 1983). King et al. (2016) suggested that the authoritarian parental
style had a positive effect on children’s drug-taking behavior and/or depression. For the real data
analysis, we focused on the individuals who experienced authoritarian parental style in their youth in
order to explore stage-sequential processes of drug-taking behavior and its association with depres-
sion symptoms. We used three sets of item variables measured over three time periods (2000, 2002,
and 2004) from the National Longitudinal Survey on Youth 1997 (NLSY97) data. A set of item re-
sponse variables for depression was measured in 2000, and additional two sets of categorical response
variables related with alcohol drinking and cigarette/marijuana smoking were obtained over three time
periods from 2000 to 2004. The proposed model can be used to discover the meaningful subgroup of
population in terms of depression (latent group variable) and the joint latent-stage sequential process
(latent profile variable) of alcohol drinking and cigarette/marijuana smoking. We also investigate the
association between the latent profile variable and the latent group variable in terms of conditional
prevalence. The covariate effects such as gender or race on the prevalence of latent profiles will be
examined in forms of baseline multinomial logistic regression.

The rest of this article is as follows. The description of our proposed model and the estimation
methods for the model parameters are presented in Sections 2 and 3. In Section 3.3, we examined the
parameter estimation and inference procedure through empirical simulation; the simulation results
are available in Appendix. In Section 4, we illustrate the practical usefulness of our new model by
analyzing data from the NLSY97 using discrete item variables related to adolescents depression and
drug-taking behavior such as alcohol drinking, cigarette smoking, and marijuana use. In Section 5, we
summarize the paper and discuss future research areas.

2. Model

2.1. Latent class analysis

A LCA is a classical methodology that divides the population into homogenous subgroups with re-
spect to response patterns for manifest items. It postulates that a distribution of a set of categorical
random variable is a mixture of finite classes with respective response patterns. Suppose there are P
categorical manifest items Z1, . . . , ZP. The responses of each manifest item for the ith individual are
obtained as a P-dimensional vector zi = [zi1, . . . , ziP], where zip can take any value from 1, . . . , rp for
p = 1, . . . , P. Let the latent class variable D have G categories, then the observed-data likelihood of
LCA for the ith individual can be written as

P(Z = zi) =
G∑

d=1

P(D = d,Z = zi) =
G∑

d=1

P(D = d)P(Z = zi |D = d)

=

G∑
d=1

P(D = d)
P∏

p=1

P(Zp = zip |D = d) =
G∑

d=1

δd

P∏
p=1

rp∏
h=1

ϕ
I(zip=h)
ph | d , (2.1)

where I(zip = h) is the indicator function which is 1 when zip = h and 0 otherwise. The likelihood of
LCA given in (2.1) is constructed under local independence assumptions, implying that the manifest
items are conditionally independent when a latent class membership is given. Here, ϕph | d = P(Zp =

h |D = d), referred as the primary measurement parameter, explains the relationship between the
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latent class and the pth manifest item, and δd = P(D = d) represents the proportion of latent class
membership d. Since all parameters in (2.1) are conditional probabilities, the sum-to-one and non-
negative constraints are explicit (

∑G
d=1 δd = 1 and

∑rp

h=1 ϕph | d = 1 for p = 1, . . . , P and d = 1, . . . ,G).

2.2. Multivariate latent class profile analysis

MLCPA has been introduced to explain the longitudinal patterns of latent class membership when
there are multiple latent class variables (Lee et al., 2019). In MLCPA, each set of manifest items mea-
sures a categorical latent variable, and the sequential patterns of identified latent classes are summa-
rized by a latent profile variable. As a result, observations with the same latent profile membership will
share common sequential patterns of joint latent class membership. In this manner, MLCPA provides
a statistical tool that allows researchers to discover a meaningful subgroup based on the representative
sequential pattern of unobservable memberships for several latent class variables.

Let C jt denote the jth latent class variable having K j nominal categories at time stage t for j =
1, . . . , J and t = 1, . . . T . For each time stage, a vector of J latent class variables Ct = [C1t, . . . ,CJt]′

can be represented as a contingency table with
∏J

j=1 K j cells, showing all possible combinations of
class memberships. Therefore, T -sequences of J latent class variables will be written in a contingency
table with (

∏J
j=1 K j)T cells. Among all possible combinations of sequential patterns, MLCPA discov-

ers the representative sequential patterns and categorizes them as latent profiles. Let the latent profile
variable U have S nominal categories describing the most common stage-sequential patterns of J la-
tent class memberships over W points in time. Let Yt = [Y1t, . . . ,YJt], where Y jt = [Y1 jt, . . . ,YM j jt]′

be a set of J vectors of discrete responses to M j items to measure the jth latent class variable at stage t,
where each variable Ym j jt can take any value from 1 to rm j for m j = 1, . . . , M j and j = 1, . . . , J. Then,
the complete-data likelihood for the ith individual (the joint probability of the latent profile U = u, the
latent class membership c = [c1, . . . , cT ], and the responses yi = [yi1, . . . , yiT ] will be

L∗i = P(U = u,C = c,Y = yi)
= P(U = u)P(C = c |U = u)P(Y = yi |C = c)

= P(U = u)
T∏

t=1

J∏
j=1

P (
C jt = c jt |U = u

) M j∏
m j=1

P
(
Ym j jt = yim j jt |C jt = c jt

)
= γu

T∏
t=1

J∏
j=1

η( j,t)
c jt | u

M j∏
m j=1

km j∏
k=1

(
ρ

( j,t)
m jk | c jt

)I(yim j jt=k)
 , (2.2)

where I(yim j jt = k) is the indicator function which is 1 when yim j jt = k and 0 otherwise. Note that
we assume P(Y = yi |C = c,U = u) = P(Y = yi |C = c) in (2.2). This assumption states that the
latent profile variable is identified only by the latent class variable. The meaning of the profile can be
interpreted only by the sequential patterns of latent class memberships; in addition, responses to the
manifest items only work for identifying the latent class variable.

2.3. Multivariate latent class profile analysis with latent group variable

Combining the LCA structure as group variable with MLCPA structure as an outcome, we propose
MLCPA with latent group variable and refer it as GLCPA. The GLCPA postulates that the distribu-
tion of latent profile variable can be affected by another latent class variable which can be identified
through the LCA structure. The proposed model is illustrated in Figure 1. A sequence of J latent class
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Figure 1: A diagram of multivariate latent class profile analysis with latent group variable (GLCPA).

variables Ct = [C1t, . . . ,CJt]′ for t = 1, . . . ,T is associated through latent profile variable U, and each
latent class variable C jt is identified by the jth set of manifest items Y jt = [Y1 jt, . . . ,YM j jt]′ at time
stage t. Latent group variable D is the discrete latent class variable identified through the manifest
items Z = [Z1, . . . , ZP]. As discussed in Section 1, the distribution of outcome latent profile variable
U is affected by the latent group membership D = d.

Using the notation given in (2.2), the complete-data likelihood of the GLCPA for the ith observa-
tion is written as

L∗i = P(U = u,D = d,C = c,Y = yi,Z = zi)

= P(D = d)
P∏

p=1

P
(
Zp = zip |D = d

)
× P(U = u |D = d)

T∏
t=1

J∏
j=1

P (
C jt = c jt |U = u

) M j∏
m j=1

P
(
Ym j jt = yim j jt |C jt = c jt

)
= γu | d

T∏
t=1

J∏
j=1

η( j,t)
c jt | u

M j∏
m j=1

km j∏
k=1

(
ρ

( j,t)
m jk | c jt

)I(yim j jt=k)
 δd

P∏
p=1

rp∏
h=1

ϕ
I(zip=h)
ph | d . (2.3)

The complete likelihood in (2.3) consists of five parameters:

(a) ρ( j,t)
m jk|c jt

= P(Ym j jt = k |C jt = c jt) denotes the probability of the response k to the (m j)th item
measuring the jth latent class variable C jt, for a given class c jt of the jth latent class variable C jt

at stage t.

(b) ϕph | d = P(Zp = h |D = d) denotes the probability of the response h to the pth item measuring the
latent group variable D, for a given latent group membership d.
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(c) η( j,t)
c jt | u = P(C jt = c jt |U = u) denotes the conditional probability of belonging to latent class c jt,

the class membership of the jth latent class variable C jt at stage t, when a latent profile variable U
has a profile membership u.

(d) γu | d = P(U = u |D = d) denotes the probability that individual has a latent profile membership u,
given latent group membership d.

(e) δd = P(D = d) denotes the probability that individual has a latent group membership D = d.

The primary measurement parameters (ρs and ϕs) identify the underlying categorical latent class and
group variables, respectively. The secondary measurement parameter η depicts the relationship be-
tween latent class variable C jt and latent profile variable U. Each identified latent profile can be
explained through a set of estimated secondary measurement parameters as individual sequential pat-
terns of changing latent class membership.

The GLCPA assumes the following conditions: (1) the latent profile variable U is related with
manifest items Y jt only through the class membership of each latent class variable C jt, (2) the response
variables Ym j jt and Zp are correlated only through the corresponding latent variables, (3) the latent
class variables are correlated only through the latent profile variable, and (4) the latent group variable
is related with latent class variables only through the latent profile variable. Here, conditions (1) and
(3) assume the situation where the latent profile variable is identified only by the latent class variable,
implying that the latent class variables C jt for j = 1, . . . , J and t = 1, . . . , T be independent when the
latent profile membership U = u is given. Condition (2) states that a set of response variables Y jt =

[Y1 jt, . . . , Ym j jt]′ corresponding to the jth latent class variable at stage t are mutually independent if
they are conditioned on C jt = c jt, the jth latent class membership at t. Such conditional independence
structure implies that any underlying association within a single set of response variables Y jt can
be fully explained by the corresponding categorical latent variable C jt. Same rule applies to the latent
group variable and latent profile variable (the latent class variables C jt for j = 1, . . . , J and t = 1, . . . , T
to be independent when the latent profile membership U = u is given). Condition (4) implies that the
latent profile structure varies across latent group membership, but the latent class structure is invariant
to the latent group membership.

The prevalence of the latent profile may also be affected by the individual’s covariates. Figure 1
shows that we can construct the multinomial logistic regression model by treating the latent profile
variable as a response variable. While the conventional multinomial logistic regression utilizes ob-
served values of the response variable and covariates, the regression on unobservable latent profile
membership relates the covariates with posterior probabilities, which will be discussed later. Suppose
we have a vector of covariates xi = [xi1, . . . , xiq]′ for the ith observation, then the latent profile can be
written as a function of covariates in multinomial logistic regression form as:

L∗(xi) = γu | d(xi)
T∏

t=1

J∏
j=1

η( j,t)
c jt | u

M j∏
m j=1

rm j∏
k=1

(
ρ

( j,t)
m jk | c jt

)I(yim j jt=k)
 δd

P∏
p=1

rp∏
h=1

ϕ
I(zip=h)
ph | d , (2.4)

where γu | d(xi) = exp(x′iβu | d)/
∑S

u=1 exp(x′iβu | d). Here, the vector of logistic regression coefficients
βu | d = [β1u | d, . . . , βqu | d]′ is interpreted as the log-odds ratio that an individual belongs to a specific
latent profile u versus to a baseline latent class, given the latent group membership D = d. The
observed-data likelihood of the GLCPA can be derived by the marginal summation of (2.4) with
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respect to all considered latent variables:

L(xi) = P(Yi = yi,Zi = zi | xi) =
G∑

d=1

S∑
u=1

K1∑
c11=1

· · ·
KJ∑

cJT=1

L∗(xi). (2.5)

3. Parameter estimation and model selection

In this section, we discuss the estimation and inference for the model parameters and the model
selection procedure. We adopt the recursive expectation-maximization (EM) algorithm (Bartolucci et
al., 2010) to estimate the model parameters and to derive the Hessian matrix of the model to obtain
the asymptotic standard errors of the parameter estimates. To determine the number of classes for
each latent variable, we investigate the model with various number of classes and chose the most
appropriate one using Akaike information criterion (AIC), Bayesian information criterion (BIC), and
bootstrap p-value as our criteria.

3.1. Recursive expectation-maximization algorithm

The parameter estimation in finite mixture model can be considered as a missing data problem, be-
cause the latent class membership cannot be observed directly. EM algorithm (Dempster et al., 1977)
can be a useful tool to estimate parameters in GLCPA, especially in that it provides stable ML esti-
mates in the proper parameter space when the appropriate initial values are given. The estimators can
also be easily obtained in closed form when covariates are not included. The conditional distribution of
the related response variables follows the multinomial distribution given the latent variables. Newton-
Raphson can be used for estimating regression coefficients when the model contains covariates be-
cause the ML estimation can be treated as an estimation problem in baseline multinomial regression.
The typical EM algorithm implements expectation step (E-step) and maximization step (M-step) for
each iteration, and repeats these steps until the solutions satisfy the convergence threshold. We calcu-
late the expectation of the conditional distributions of latent variables given the response variables in
E-step, and update the parameter estimates using the estimators which maximize the expectation.

• E-step. We calculate the joint posterior probability of latent variables given the ith observed re-
sponses and covariates as:

θi(u,d,c) = P(U = u,D = d,C = c | y, z, xi)

=
L∗(xi)
L(xi)

, (3.1)

for i = 1, . . . , n, u = 1, . . . , S , d = 1, . . . ,G, c jt = 1, . . . ,K j, j = 1, . . . , J, and t = 1, . . . ,T . Then,
the expectation of the complete-data log-likelihood given in (2.4) can be expressed as

E

 n∑
i=1

log L∗(xi)

 = n∑
i=1

θi(u) log δd +

n∑
i=1

θi(u,d) log γu | d(xi) +
n∑

i=1

T∑
t=1

J∑
j=1

θi(u,c jt) log η( j,t)
c jt | u

+

n∑
i=1

P∑
p=1

rp∑
h=1

θi(d)I(zip=h) log ϕph|d+
n∑

i=1

T∑
t=1

J∑
j=1

M j∑
m j=1

rm j∑
k=1

θi(c jt)I(yim j jt=k)logρ( j,t)
m jk|c jt

,

where marginal posterior probabilities can be computed as θi(u,d) =
∏J

j=1
∏T

t=1
∑K j

c jt=1 θi(u,d,c), θi(u,c jt) =∑G
d=1

∏K
j′, j

∏T
t′,t

∑K j′

c j′ t′=1 θi(u,d,c), θi(u) =
∑G

d=1 θi(u,d), θi(d) =
∑S

u=1 θi(u,d), and θi(c jt) =
∑S

u=1
∑S

u=1 θi(u,c jt).
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However, the computational complexity for calculating overall posterior was not negligible (espe-
cially in that as number of time stage T becomes larger) because its dimension is (

∏J
j=1 K j×S ×G)T ,

which increases exponentially for T . Chang and Chung (2013) addressed such computational issue
based on recursive formulas (Bartolucci et al., 2010), and we also applied it to the E-step using the
forward and backward probabilities to deal with computational complexity. Let α and λ represent
the forward and backward probabilities:

αit (u, ct) = P(Y1 = y1, . . . ,Yt = yt,Ct = ct | u)

=

K1∑
c1,t−1=1

· · ·
KJ∑

cJ,t−1=1

αi,t−1 (u, ct−1)
J∏

j=1

η( j,t)
c jt | u

M j∏
m j=1

rm j∏
k=1

(
ρ

( j,t)
m jk | c jt

)I(yim j jt=k)
 ,

λit (u, ct) = P(Yt+1 = yt+1, . . . ,YT = yT | ct, u)

=

K1∑
c1,t+1=1

· · ·
KJ∑

cJ,t+1=1

λi,t+1 (u, ct+1)
J∏

j=1

η( j,t+1)
c j,t+1 | u

M j∏
m j=1

rm j∏
k=1

(
ρ

( j,t+1)
m jk | c j(t+1)

)I(yim j j(t+1)=k)
 .

The forward and backward probabilities allow us to obtain the posterior probabilities of latent class
memberships at single time point (ct = [c1t, . . . , cJt], t = 1, . . . ,T ) without considering the combi-
nation of whole latent variable sequences. The posterior probability of latent class memberships at
stage t can be obtained as

θi(u,d,ct) =
δd

∏p
p=1

∏rp

h=1 ϕ
I(zip=h)
ph | d γu | d(xi)αit(u, ct)λit(u, ct)∑G

g=1 δg
∏p

p=1
∏rp

h=1 ϕ
I(zip=h)
ph | g

∑S
s=1 γs | g(xi)

∑K1
c1T=1 · · ·

∑KJ
cJT=1 αiT (s, cT )

. (3.2)

The dimension of the overall posterior probability is reduced to (
∏J

j=1 K j × S ×G × T ). The reduc-
tion of dimension is noticeable when T ≥ 3. Chang and Chung (2013) showed that the recursive
approach in E-step results in a huge decrease in computational time through simulation study.

• M-step. The M-step maximizes the expected complete-data likelihood with respect to the model
parameters. Since the sum of parameters that are used in measuring each latent variable is con-
strained to be one (for instance,

∑G
d=1 δd = 1,

∑S
u=1 γu | d = 1, d = 1, . . . ,G), we adopted Lagrange

multiplier to obtain the ML estimator under such constraints. The resulting parameter estimators
for the GLCPA without covariates are given as

γ̂u | d =

∑n
i=1 θi(u,d)∑n
i=1 θi(d)

, η̂
( j,t)
c jt | u =

∑n
i=1 θi(u,c jt)∑n

i=1 θi(u)
, δ̂d =

∑n
i=1 θi(d)

n
,

ϕ̂ph | d =

∑n
i=1 θi(d)I(zip = h)∑n

i=1 θi(d)
, and ρ̂

( j,t)
m jk | c jt

=

∑n
i=1 θi(c jt)I(yim j jt = k)∑n

i=1 θi(c jt)
. (3.3)

To deal with missing values in response variables, EM estimator for primary measurement parame-
ters should be extended. Under the missing at random (MAR) assumption, the posterior probability
θobs

i(c jt)
and θobs

i(d) are calculated using only observed values. For the individuals whose response value is
missing, the additional term is included in primary measurement parameter estimators that contain
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information about provisional estimates ρ̂( j,t)∗

m jk | c jt
and ϕ̂∗ph | d as

ρ̂
( j,t)
m jk | c jt

=

∑
i∈obs( j,t)

m j
θobs

i(c jt)
I
(
yim j jt = k

)
+

∑
i∈mis( j,t)

m j
θobs

i(c jt)
ρ̂

( j,t)∗

m jk | c jt∑n
i=1 θ

obs
i(c jt)

,

and

ϕ̂ph | d =

∑
i∈obsp

θobs
i(d)I

(
zip = h

)
+

∑
i∈misp

θobs
i(d)ϕ̂

∗
ph | d∑n

i=1 θ
obs
i(d)

,

where obs( j,t)
m j indicates the individuals who responded to the (m j)th item measuring latent variable

j at stage t, and mis( j,t)
m j indicates the ones whose response values are missing.

To include the covariate effects on the distribution of latent profiles, γu | d should be re-written as
γu | d(xi) = exp(xT

i βu | d) /
∑S

s=1 exp(xT
i βs | d), and thus the estimator for γu | d in (3.3) is no longer

available. In this case, we obtain β-estimate which maximizes complete-data log-likelihood by
implementing the Newton-Raphson method for baseline multinomial logistic regression, where the
fractional counts in the response variable are allowed.

3.2. Model diagnosis and selection

Model selection in a complex latent structure is crucial because the interpretability of the model
significantly differed by the number of latent classes for each latent variable. Likelihood-ratio test
statistics (LRT) cannot be used for comparing different models since the models with different number
of latent classes are not in a nested relationship (Collins and Lanza, 2010). Alternatively, we adopted
AIC and BIC to assess a relative model fit among candidate models with a different number of classes;
consequently, and the model with smaller AIC (or BIC) is preferred. For the absolute model fit, we
used the parametric bootstrap p-value; in addition, the model with a p-value larger than 0.05 will be
considered as an appropriate model. The procedure for bootstrap p-value is as: (1) fit GLCPA and
obtain ML estimates and G2 = −2(log Lmodel − log Lsat), (2) generate the data set of n samples using
ML estimates from step (1), (3) fit the model with the generated data set and obtain G2, (4) repeat the
steps (2) and (3) 100 times; therefore, this will provide with empirical distribution of G2 (5) to obtain
p-value by calculating the proportion of bootstrap G2s that are greater than the observed G2 from step
(1).

Models with all possible combinations can be candidates since the model selection procedure can
entail tedious trials and errors because each latent variable may have a different number of classes.
Jeon et al. (2017) showed that the number of latent classes in a complex latent structure can be de-
termined hierarchically. Therefore, one can determine the number of each latent variable and then
work on finding the number of latent profiles with the number of latent classes that are fixed from the
previous step. Based on this hierarchical process, we chose the number of latent classes for each latent
variable based on AIC and BIC, then we calculated the bootstrap p-value to check if the model was ap-
propriate for data. A p-value smaller than 0.05 was accepted as evidence of lack of fit. Bandeen-Roche
et al. (1997) proved that the LCA has a marginalization property, showing that the model selection
procedure can be done without considering the covariates. As a result, we consider the covariate ef-
fects on latent profiles after the model selection procedure is completed.
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3.3. Simulations

The simulation study was designed to check if our estimation method provides consistent parameter
estimates and asymptotic standard errors. We generated datasets and calculated the ML estimates
using a recursive EM algorithm. We constructed 95% confidence interval for each parameters based
on parameter estimates and standard errors; in addition, the empirical coverage of the confidence
intervals were calculated from 100 iterations. Standard errors of estimates were obtained through an
asymptotic variance-covariance matrix, by taking the negative inverse of the Hessian matrix. Data was
simulated to have two time stages with two latent variables, a group latent variable with two classes,
and a sample size of 500. Each latent variable was measured by four binary item-response variables
with a latent profile variable designed to have a two-profile structure. The true ρ-parameter values
were set to be either strong (close to 0 or 1) (Table A.1) or mixed (Table A.2). The simulation results
can be found in Appendix A.

4. Application to NLSY97 data

4.1. Data description

The NLSY97 is a longitudinal project that tracks the lives of a sample of American youth born be-
tween 1980–1984; 8,984 respondents ages from 14 to 17 were first interviewed in 1997. This ongoing
project has been surveyed 10 times; respondents are now interviewed biennially. The response vari-
ables selected for the research are related with alcohol drinking, cigarette/marijuana smoking, and
depression. Two sets of five items were used for measuring the two latent class variables, alcohol
drinking and cigarette/marijuana smoking, respectively. An additional five items were used for mea-
suring depression which serves as the latent group variable. Response variables related with depres-
sion were collected in 2000 when respondents were 17–20 years old, and the responses for alcohol
drinking and cigarette/marijuana smoking were collected in 2000, 2002, and 2004.

To measure latent group variable (depression), we selected the following five survey questions: (a)
How often you have been a nervous person in past month? (b) How often you felt calm and peaceful
in past month? (c) How often you felt down and blue in past month? (d) How often you have been
a happy person in past month? and (e) How often you depressed in last month? Response variables
(b) and (d) were re-coded to be consistent in the manner that the higher response values implies more
exposure to depression symptoms. In this way, we defined each binary manifest item indicating if the
respondent had suffered that feeling at least one time or not, as Nervous, Not calm, Down and blue,
Not happy, and Depressed, respectively.

For alcohol drinking, the following three survey items were selected and re-coded: (a) number
of days drinking alcohol last 30 days (b) number of days having five or more drinks per day last 30
days (c) number of days drinking at schools or work per day last 30 days. The quantitative question
(a) was used to create two binary manifest items on if one had drank alcohol in last 30 days (Current
drinking), whether had ever drank for five or more days (Frequent drinking), and if one had drank for
20 or more days (Daily drinking). Questionnaire (b) and (c) were transformed into binary variables
(Binge drinking and Drinking at school), having ‘yes’ if its value was higher than 0, ‘no’ otherwise.

The quantitative question for cigarette/marijuana smoking was transformed into two binary items
of if one had ever smoked in the last 30 days (Current cigarette smoking), whether one had ever
smoked in a daily manner for the last 30 days (Daily cigarette smoking), and if one had ever smoked
20 or more cigarettes per day in last 30 days (Heavy cigarette smoking). Finally, the variable Current
marijuana smoking was ‘yes’ if one had ever smoked in last 30 days, and Frequent marijuana smoking
was assigned to be ‘yes’ if one used marijuana more than 5 times in last 30 days. Table 1 shows
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Table 1: Percentage of ‘yes’ responses and non-responses to the items of the latent group (depression) and class
variables (alcohol drinking and cigarette/marijuana smoking) over three waves

Year
Latent variable Manifest item 2000 2002 2004

Yes Missing Yes Missing Yes Missing

Depression

Nervous 62.86 9.69
Not calm 6.34 9.63
Down and blue 69.05 9.74
Not happy 2.64 9.69
Depressed 37.95 9.69

Alcohol

Current drinking 42.51 9.48 51.04 11.11 52.21 17.11

drinking

Frequent drinking 18.11 9.48 24.91 11.11 26.64 17.11
Daily drinking 4.41 9.69 4.72 11.11 2.54 17.93
Binge drinking 24.96 9.53 28.51 11.26 30.44 18.54
Drinking at school 8.77 9.43 6.85 11.06 5.94 16.81

Cigarettes/
Current cigarette smoking 35.92 10.95 35.92 10.95 34.40 17.40

marijuana
Daily cigarette smoking 17.19 9.43 20.59 10.95 20.64 17.40

smoking
Heavy cigarette smoking 13.03 9.58 15.12 10.95 15.17 17.40
Current marijuana smoking 26.13 9.94 24.10 11.36 19.08 17.19
Frequent marijuana smoking 11.52 9.44 12.43 11.01 9.69 16.59

Table 2: Goodness-of-fit measures for a series of LCA models with the different number of classes for each
latent variable

Latent variable Number of classes AIC BIC Bootstrap p-value

Depression

2 7444.7 7506.1 0.00
3 7365.1 7460.1 0.08
4 7364.9 7493.5 0.18
5 7367.6 7529.6 0.77

Alcohol drinking

2 18246.5 18320.1 0.00
3 18092.4 18206.0 0.06
4 18093.2 18247.0 0.42
5 18105.2 18299.1 0.52

Cigarette/marijuana smoking

2 20802.1 20875.6 0.00
3 19669.7 19783.3 0.04
4 18931.7 19085.4 0.52
5 18942.4 19136.3 0.54

LCA = latent class analysis; AIC = Akaike information criterion; BIC = Bayesian information criterion.

the percentages of respondents who responded ‘yes’ to the 15 binary response variables, and the
proportion of non-responses.

By introducing the GLCPA to drug-taking behavior and depression measurement items, we expect
to study the following properties of the population: (a) What kinds of latent classes may be found for
alcohol drinking, cigarette/marijuana smoking, and depression? (b) What kinds of common sequential
patterns of alcohol drinking and cigarette/marijuana smoking can be identified? (c) How does the
prevalence of latent profiles of alcohol drinking and cigarette/marijuana smoking change as the latent
group membership of depression is varied?

4.2. Model selection

We empirically fitted a series of conventional LCA models on each sets of response variable by in-
creasing the number of latent classes from 2 to 5 and chose an appropriate model based on the AIC,
BIC, and the model interpretability. Table 2 shows the goodness-of-fit statistics with the different num-
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Table 3: The estimated item-response probabilities for the latent group variable, depression (ϕ-parameters)

Manifest item Latent group for depression
Not depressed Slightly depressed Seriously depressed

Nervous 0.413 0.846 0.925
Not calm 0.021 0.000† 0.772
Down and blue 0.423 0.961 0.949
Not happy 0.000† 0.012 0.280
Depressed 0.062 0.603 0.764

† The estimated probabilities are constrained to be zero or one.

ber of classes for each latent variable. BIC selected a three-class model for depression and its bootstrap
p-value supported the three-class model. Both AIC and BIC selected the three-class model for alco-
hol drinking and four-class model for cigarette/marijuana smoking, and and their bootstrap p-values
showed that these models were appropriate. For Alcohol drinking and Depression, ρ-parameters of
third and fourth classes in four-class model were not noticeably different; therefore, the interpretation
for the latent class became unclear. In addition, the redundant number of latent classes may cause an
identifiability problem. As a result, we adopted three-class model although they showed a relatively
small p-value.

The second step of model selection in GLCPA determined the number of latent profiles. As dis-
cussed in Section 3, we will treat the number of latent classes for each identified latent variable
as given in the first step (three classes for depression and alcohol drinking and four classes for
cigarette/marijuana smoking), and investigate a series of AIC and BIC values from various candi-
date models. We computed AIC and BIC values from different models whose number of latent profile
are varied from 2 to 6. BIC showed the lowest value in the five-profile model. However, the class
interpretations for the fourth and the fifth profile were obscure in a model with five profiles. There-
fore, we adopted the four-profile structure as our final model. Given the selected latent structure, we
tested if the primary measurement parameters can be equal across the time stages. This homogeneity
assumption for ρ-parameter is critical in the longitudinal latent class model because the interpreta-
tion for each identified latent class is determined based on the ρ-parameter estimates. The meaning of
each latent class should therefor be kept equal across the time for a clear interpretation of the latent
profile variable. We used a likelihood-ratio test because the model with equal ρ-parameters over time
is nested in the one with no constraints. We set ρ-parameters to be invariant over time because the
null hypothesis (ρ-parameters for each latent class variable are equal across the time) was not rejected
under α = 0.05 (χ2 = 88.42 with df = 70 and p-value = 0.067).

Finally, we included the covariates on the prevalence of the latent profile by incorporating the base-
line multinomial logistic regression in GLCPA. We used gender (male/female) and race (white/black/
others) as covariates, and obtained the estimated odds ratios to investigate their effect on identified
latent profiles.

4.3. Parameter estimates

Table 3 shows the estimates of item-response probabilities for the three identified latent classes of the
latent group variable, depression. The first latent class has probabilities that are lower than 0.5 for all
binary responses, meaning that individuals in that class do not have any depression symptoms. Thus,
this subgroup can be named as ‘not depressed.’ The second group has high probabilities for nervous,
down and blue, and depressed items. Thus, the second latent groups can be considered as a ‘slightly
depressed’ group. The third group has high probabilities for all items, except not happy item, so this
group can be identified as ‘seriously depressed’ group.
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Table 4: The estimated item-response probabilities for the latent class variable, alcohol drinking (ρ-parameters)

Manifest item Latent class for alcohol drinking
Non drinker Current drinker Heavy drinker

Current drinking 0.064 1.000† 1.000†

Frequent drinking 0.000† 0.307 0.842
Daily drinking 0.000† 0.000† 0.158
Binge drinking 0.000† 0.222 0.954
Drinking at school 0.000† 0.117 0.189

† The estimated probabilities are constrained to be zero or one.

Table 5: The estimated item-response probabilities for the latent class variable, cigarette/marijuana smoking
(ρ-parameters)

Manifest item
Latent class for cigarette/marijuana smoking

Non smoker Marijuana Heavy cigarette Heavy cigarette/
smoker smoker marijuana smoker

Current cigarette smoking 0.079 0.380 1.000† 1.000†

Daily cigarette smoking 0.000† 0.000† 0.867 0.947
Heavy cigarette smoking 0.000† 0.000† 0.524 0.581
Current marijuana smoking 0.039 1.000† 0.112 1.000†

Frequent marijuana smoking 0.000† 0.443 0.000† 0.737
† The estimated probabilities are constrained to be zero or one.

Table 4 shows the primary measurement parameter estimates for the alcohol drinking variable.
The ρ-estimates in the first class were all close or equal to 0, implying that individuals in the first
class are not likely exposed to any alcohol drinking. Thus, the first class was named as ‘Non drinker.’
The second class showed the high probabilities for Current drinking item. As a result, this latent class
was labels as ‘Current drinker.’ The third class was labeled as ‘Heavy drinker’ because they had high
probabilities for Current, Frequent, and Binge drinking items.

Table 5 shows the five classes of cigarette/marijuana smoking class variable and the estimated
ρ-parameter estimates. The first latent class showed low probabilities for all items, meaning that indi-
viduals in the first class are ‘Non smoker.’ The second class was named as ‘Marijuana smoker’ because
it showed high probabilities for Current mar. smoking item. Similarly, the third class was named as
‘Heavy cigarette smoker’ because it had high probabilities for the Current cigarette smoking, Daily
cigarette smoking, and Heavy cigarette smoking items. The fourth class represented the most serious
cigarettes and marijuana smokers: it showed the highest probabilities for all manifest items and thus
classified as ‘Heavy cigarette/marijuana smoker.’

Table 6 shows the estimated secondary measurement parameters (η-parameters) for the latent pro-
file variable. In Profile 1, η-parameter estimates for alcohol drinking and cigarette/marijuana smoking
variables showed the highest probabilities for the ‘Non drinker’ and ‘Non smoker’ respectively, across
all three time waves. This implies that Profile 1 presents ‘Not involved in any substance disorder’ sub-
group. In Profile 2, the parameter estimates for alcohol drinking variable showed that individuals in
this profile moved from ‘Current drinker’ class in 2000 towards ‘Heavy drinker’ in 2002, while they
remained in the ‘Non smoker’ class for the cigarette/marijuana variable. As a result, Profile 2 can be
named as ‘Heavy drinking advancer.’ In Profile 3, the prevalence of ‘Non drinker’ class for the alcohol
drinking variable is the highest in 2000 and moved to ‘Heavy drinker’ across 2002 and 2004. For the
cigarette/marijuana smoking variable, the adolescents in this profile had the highest probabilities in
‘Heavy cigarette smoker’ for all three waves. Consequently, Profile 3 was named as ‘Heavy drinking
advancer/Heavy cigarette smoker.’ However, Profile 4 identified a subgroup of those who stayed in
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Table 6: The estimated conditional probabilities of the latent class membership for a given latent profile
membership (η-parameters)

Profile Year

Latent class for Latent class for
alcohol drinking cigarette/marijuana smoking

Non Current Heavy Non Marijuana Heavy cigarette Heavy cigarette/
drinker drinker drinker smoker smoker smoker marijuana smoker

1
00 0.891 0.109 0.000† 0.975 0.000† 0.025 0.000†

02 0.795 0.205 0.000† 0.981 0.009 0.010 0.000†

04 0.690 0.272 0.038 0.950 0.011 0.039 0.000†

2
00 0.319 0.347 0.334 0.594 0.381 0.013 0.012
02 0.195 0.352 0.453 0.602 0.375 0.000† 0.023
04 0.167 0.352 0.481 0.636 0.302 0.023 0.039

3
00 0.483 0.233 0.284 0.304 0.057 0.532 0.107
02 0.335 0.279 0.386 0.098 0.000† 0.824 0.078
04 0.339 0.223 0.438 0.146 0.000† 0.818 0.036

4
00 0.161 0.173 0.666 0.059 0.170 0.148 0.623
02 0.125 0.201 0.674 0.035 0.137 0.158 0.670
04 0.053 0.182 0.765 0.030 0.084 0.270 0.616

† The estimated probabilities are constrained to be zero or one.

Table 7: The estimated odds ratio for the latent profile membership given a latent group variable (depression)
and its 95% confidence interval (Profile 1 is the baseline)

Latent group Profile Gender Race
for depression Male Black Others

2 1.074 1.237 0.881
[0.615, 1.875] [0.673, 2.275] [0.377, 2.059]

Not 3 1.279 1.197 0.682
depressed [0.747, 2.189] [0.657, 2.179] [0.341, 1.363]

4 1.449 0.494 0.229
[0.609, 3.444] [0.177, 1.374] [0.040, 1.312]

2 1.370 0.559 0.580
[0.865, 2.169] [0.328, 0.953] [0.312, 1.076]

Slightly 3 1.392 0.738 0.757
depressed [0.902, 2.144] [0.447, 1.219] [0.452, 1.266]

4 2.410 0.178 0.409
[1.512, 3.838] [0.082, 0.384] [0.229, 0.729]

2 0.983 1.288 0.834
[0.310, 3.111] [0.344, 4.815] [0.205, 3.392]

Seriously 3 0.950 1.045 0.902
depressed [0.314, 2.880] [0.276, 3.955] [0.259, 3.146]

4 4.212 0.154 0.217
[1.003, 17.797] [0.014, 1.650] [0.036, 1.301]

‘Heavy drinker’ and ‘Heavy cigarette/marijuana smoker’ for alcohol drinking and cigarette/marijuana
smoking variables, respectively for all three waves. Profile 4 was labeled as ‘Heavy substance user’
because it accurately represents adolescents who are seriously exposed to serious drug-taking behav-
ior throughout the all time waves.

We incorporated the multinomial logistic regression into our model in order to examine the effect
of individual characteristics on latent profile membership. Table 7 shows the estimated odds ratios
and the 95% confidence intervals. Profile 1 was set as the baseline category; therefore, the estimated
parameters represent the odds ratios of belonging to a certain latent profile compared to Profile 1.
We considered gender (female was set to be the baseline) and race (White was set to be the baseline)
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Table 8: Estimated prevalence of latent profile membership for a given depression group

Latent profile Latent group for depression
Not depressed Slightly depressed Seriously depressed

1 0.512 0.337 0.325
2 0.219 0.261 0.248
3 0.200 0.248 0.297
4 0.069 0.154 0.130

as covariates, and the estimated coefficients were transformed into odds ratios for interpretation. No
covariate effect had a significant effect for ‘Not depressed’ group. For the ‘Slightly depressed’ group,
male adolescents have 2.41 times higher odds for Profile 4 compared to the baseline (Profile 1) than
females. Similarly, Blacks have 0.559 times lower odds for Profile 2 versus the baseline, 0.178 times
lower odds for Profile 4 versus the baseline than White counterparts. For ‘Seriously depressed’ group,
male adolescents have 4.21 times higher odds for Profile 4 compared to the baseline than females.

Finally, Table 8 shows the γ-estimates which represent the prevalence of four latent profile sub-
groups given the depression latent group variable. The γ-estimates can be obtained by

P̂(U = u |D = d, xi) =
1
n

n∑
i=1

γ̂u | g(xi)

=
1
n

n∑
i=1

exp
(
xiβ̂u | d

)
∑G

g=1 exp
(
xiβ̂u | g

) .
Profile 1 was the most prevalent class (0.512) among the four profiles when the depression group was
‘Not depressed,’ but decreases to 0.325 for the ‘Seriously depressed’ group. Profile 2 showed rela-
tively consistent proportions throughout all depression levels, ranging from 0.219 to 0.261. However,
Profiles 3 and 4 showed an increasing trend as the level of depression becomes severe, from ‘Not
Depressed’ to ‘Seriously Depressed.’ The estimated γ-parameters provide the quantitative measures
for the associations between two categorical latent variables in terms of the conditional probability of
having a certain latent profile membership given the latent group membership. We could see that as
individuals who are exposed to more severe depression levels are more likely to experience serious
drug-taking behavior.

5. Conclusion

We suggested a new type of latent variable model to examine the complex structure of categorical
latent variables, especially in cases where we need to study the longitudinal trends of latent vari-
ables identified through a repeated measured manifest item. The GLCPA uncovers the three types of
categorical latent variables: the first are the latent class variables explaining the associations among
manifest items, the second is the latent profile variable that examines the longitudinal patterns of one
or more latent class variables through repeatedly measured manifest items, and the third is a single
latent variable that can be treated as group variable. The GLCPA may specify the conditional proba-
bility of individuals belonging to a certain latent profile given the identified latent group membership.
Consequently, our proposed model can systemically specify the effect of a latent group membership
on the probability of having a certain sequential patterns. We expect that this methodology can be
widely applied in educational and psychological studies.

Through the analysis of NLSY97 data, we found four representative sequential patterns of young
adolescents drug-taking behavior. These four common patterns identify the subgroups of a population
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not exposed to any type of substance use (Profile 1, ‘Not involved in any substance disorder’), who
moved to severe alcohol drinker (Profile 2, ‘Heavy drinking advancer’), heavy cigarette smokers who
were likely to transfer from non drinker to heavy drinker (Profile 3, ‘Heavy drinking advancer/Heavy
cigarette smoker), and adolescents with serious drug-taking behavior (Profile 4, ‘Heavy substance
user’). The proportions of the four latent profiles varied by the individual level of depression symp-
toms. Our proposed model discovered that the probability of not being exposed to the any type of
drug-taking behavior decreases as the level of depression symptoms increase and that the prevalence
of the adolescents with severe drug-taking behaviors also increases. This does not imply a causal
relationship; however, such trend provides a quantitative indication of positive association between
depression symptoms and drug-taking behavior. A rigid causal inference between the latent profile
variable and the group latent variable represents a future research topic. For the causal inference ap-
proach in the conventional latent class structure (Lanza et al., 2013).

The EM algorithm is widely adopted for the parameter estimation of the finite mixture model
due to difficulties with unobservable structures. An EM algorithm provided a stable ML estimation;
however, the computational cost was relatively huge compared to the other estimation strategies with
the burden of computational complexity also becoming worse if the number of time stage increases.
The recursive method discussed in Subsection 3.1 significantly reduced computational complexity by
skipping the calculation of redundant posterior terms from (3.1). For the simulation result in the latent
class profile analysis, see Chang and Chung (2013) which showed the superiority of recursive EM es-
timation to conventional EM in time efficiency. EM algorithm also required appropriate initial values
to guarantee the converged solution to be a global maximum. To achieve global maximum, we used
100 different sets of starting values and chose the one with the highest likelihood as a final solution,
which requires another huge calculation and time cost. A deterministic annealing EM algorithm en-
sures that a global maximum can be adopted to avoid the difficulty of choosing an appropriate initial
value (Chang and Chung, 2013; Lee and Chung, 2017). We have now made a program for GLCPA
written in R language (version 3.6.0) that is available on request.

Appendix A: Simulation results

Table A.1 and A.2 shows that the average of parameter estimates, mean square errors, and 95% cover-
age probabilities for strong and mixed primary measurement parameters (ρ-parameters). Strong mea-
surement parameters are close to 0 or 1, indicating a strong association between the response variable
and the latent variable. However, some mixed measurement parameters, are close to 0.5 and represent
the relatively weaker association. The average estimates from the EM algorithm were considerably
similar with the true values along with the coverage probabilities of the 95% confidence intervals
that are fairly close to 0.95 in both simulations. This implies that the parameter estimation and model
identification are working properly.

Appendix B: Elements of the score function

Let Θ be a vector of all free parameters for the GLCPA. The score function S (Θ) is obtained by
the first-ordered derivatives of the log-likelihood of the GLCPA given in (2.5) with respect to the
model parameters Θ. Let β be the vectorized β-parameters in the GLCPA model. The elements of the
first-derivative vector with respect to β (i.e.,

∑n
i=1 ∂ log L(xi)/∂β) are given by

n∑
i=1

∂ log L(xi)
∂βqu | d

=

n∑
i=1

xiq
[
θi(u,d) − γu | d(xi)θi(d)

]
,
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Table A.1: Average estimates (EST), mean square error (MSE), and coverage probability (CP) of 95%
confidence intervals for parameter estimates (Strong)

Parameter True EST MSE CP Parameter True EST MSE CP
ρ(1,1)

11 | 1 0.90 0.901 0.0004 0.95 ρ(1,1)
11 | 2 0.10 0.102 0.0003 0.97

ρ(1,1)
21 | 1 0.90 0.902 0.0004 0.97 ρ(1,1)

21 | 2 0.10 0.098 0.0004 0.97

ρ(1,1)
31 | 1 0.90 0.897 0.0004 0.94 ρ(1,1)

31 | 2 0.10 0.101 0.0004 0.97

ρ(1,1)
41 | 1 0.90 0.904 0.0004 0.97 ρ(1,1)

41 | 2 0.10 0.099 0.0004 0.96

ρ(2,1)
11 | 1 0.10 0.097 0.0003 0.96 ρ(2,1)

11 | 2 0.90 0.903 0.0005 0.95

ρ(2,1)
21 | 1 0.10 0.101 0.0004 0.97 ρ(2,1)

21 | 2 0.90 0.898 0.0004 0.92

ρ(2,1)
31 | 1 0.10 0.101 0.0004 0.93 ρ(2,1)

31 | 2 0.90 0.901 0.0004 0.94

ρ(2,1)
41 | 1 0.10 0.102 0.0004 0.97 ρ(2,1)

41 | 2 0.90 0.895 0.0004 0.94

ρ(1,2)
11 | 1 0.10 0.099 0.0003 0.96 ρ(1,2)

11 | 2 0.90 0.903 0.0004 0.96

ρ(1,2)
21 | 1 0.10 0.104 0.0005 0.98 ρ(1,2)

21 | 2 0.90 0.897 0.0005 0.97

ρ(1,2)
31 | 1 0.10 0.097 0.0004 0.96 ρ(1,2)

31 | 2 0.90 0.901 0.0003 0.94

ρ(1,2)
41 | 1 0.10 0.097 0.0004 0.96 ρ(1,2)

41 | 2 0.90 0.902 0.0008 0.96

ρ(2,2)
11 | 1 0.90 0.896 0.0003 0.94 ρ(2,2)

11 | 2 0.10 0.099 0.0004 0.97

ρ(2,2)
21 | 1 0.90 0.900 0.0003 0.95 ρ(2,2)

21 | 2 0.10 0.100 0.0004 0.95

ρ(2,2)
31 | 1 0.90 0.896 0.0003 0.97 ρ(2,2)

31 | 2 0.10 0.099 0.0003 0.95

ρ(2,2)
41 | 1 0.90 0.899 0.0004 0.94 ρ(2,2)

41 | 2 0.10 0.098 0.0003 0.92

η(1,1)
1 | 1 0.80 0.799 0.0003 0.98 η(1,1)

1 | 2 0.20 0.198 0.0004 0.98

η(2,1)
1 | 1 0.20 0.201 0.0003 0.94 η(2,1)

1 | 2 0.80 0.801 0.0004 0.96

η(1,2)
1 | 1 0.20 0.202 0.0004 0.95 η(1,2)

1 | 2 0.80 0.803 0.0003 0.99

η(2,2)
1 | 1 0.80 0.802 0.0004 0.94 η(2,2)

1 | 2 0.20 0.202 0.0004 0.97

β11 | 1 −1.00 −1.023 0.0713 0.97 β21 | 1 1.00 1.042 0.0456 0.95

β11 | 2 1.00 1.031 0.0899 0.98 β21 | 2 −1.00 −1.007 0.0392 0.97

ϕ11 | 1 0.90 0.904 0.0007 0.99 ϕ11 | 2 0.10 0.101 0.0008 0.97

ϕ21 | 1 0.90 0.900 0.0005 0.97 ϕ21 | 2 0.10 0.103 0.0007 0.96

ϕ31 | 1 0.90 0.906 0.0009 0.97 ϕ31 | 2 0.10 0.099 0.0007 0.95

ϕ41 | 1 0.90 0.901 0.0006 0.96 ϕ41 | 2 0.10 0.102 0.0008 0.98

δ1 0.50 0.499 0.0005 0.95

for q = 1, . . . , p, u = 1, . . . , S − 1, d = 1, . . . ,D. Also, let ρ( j,t)
m j | c jt

= [ρ( j,t)
m j1 | c jt

, . . . , ρ
( j,t)
m jrm j | c jt

]T , and

η( j,t)
t | s = [η( j,t)

1t | s, . . . , η
( j,t)
K jt | s]

T be the vectorized ρ-and η-parameters, respectively for m j = 1, . . . , M j,
c jt = 1, . . . ,K j, j = 1, . . . , J, t = 1, . . . , T , and s = 1, . . . , S . The elements of the first-derivative vector
with respect to ρ( j,t)

m j | c jt
and η( j,t)

t | s are obtained by

n∑
i=1

∂ log L(xi)
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.
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Table A.2: Average estimates (EST), mean square error (MSE), and coverage probability (CP) of 95%
confidence intervals for parameter estimates (Mixed)

Parameter True EST MSE CP Parameter True EST MSE CP
ρ(1,1)

11 | 1 0.90 0.898 0.0005 0.94 ρ(1,1)
11 | 2 0.10 0.103 0.0003 0.98

ρ(1,1)
21 | 1 0.90 0.900 0.0003 0.98 ρ(1,1)

21 | 2 0.10 0.099 0.0004 0.97

ρ(1,1)
31 | 1 0.70 0.703 0.0009 0.93 ρ(1,1)

31 | 2 0.10 0.101 0.0004 0.96

ρ(1,1)
41 | 1 0.70 0.700 0.0007 0.98 ρ(1,1)

41 | 2 0.10 0.099 0.0004 0.96

ρ(2,1)
11 | 1 0.10 0.096 0.0006 0.96 ρ(2,1)

11 | 2 0.70 0.706 0.0005 0.94

ρ(2,1)
21 | 1 0.10 0.101 0.0004 0.98 ρ(2,1)

21 | 2 0.70 0.699 0.0004 0.92

ρ(2,1)
31 | 1 0.30 0.301 0.0013 0.92 ρ(2,1)

31 | 2 0.90 0.901 0.0014 0.94

ρ(2,1)
41 | 1 0.30 0.300 0.0003 0.96 ρ(2,1)

41 | 2 0.90 0.895 0.0009 0.94

ρ(1,2)
11 | 1 0.10 0.099 0.0011 0.97 ρ(1,2)

11 | 2 0.90 0.903 0.0006 0.95

ρ(1,2)
21 | 1 0.10 0.104 0.0015 0.96 ρ(1,2)

21 | 2 0.90 0.897 0.0006 0.94

ρ(1,2)
31 | 1 0.30 0.299 0.0006 0.96 ρ(1,2)

31 | 2 0.70 0.701 0.0010 0.94

ρ(1,2)
41 | 1 0.30 0.300 0.0005 0.97 ρ(1,2)

41 | 2 0.70 0.702 0.0008 0.97

ρ(2,2)
11 | 1 0.90 0.896 0.0006 0.96 ρ(2,2)

11 | 2 0.10 0.099 0.0004 0.94

ρ(2,2)
21 | 1 0.90 0.900 0.0007 0.95 ρ(2,2)

21 | 2 0.10 0.100 0.0005 0.95

ρ(2,2)
31 | 1 0.70 0.697 0.0009 0.97 ρ(2,2)

31 | 2 0.10 0.095 0.0008 0.95

ρ(2,2)
41 | 1 0.70 0.697 0.0008 0.93 ρ(2,2)

41 | 2 0.10 0.101 0.0010 0.93

η(1,1)
1 | 1 0.80 0.799 0.0013 0.97 η(1,1)

1 | 2 0.20 0.194 0.0012 0.98

η(2,1)
1 | 1 0.20 0.196 0.0012 0.97 η(2,1)

1 | 2 0.80 0.810 0.0018 0.96

η(1,2)
1 | 1 0.20 0.190 0.0018 0.96 η(1,2)

1 | 2 0.80 0.802 0.0014 0.97

η(2,2)
1 | 1 0.80 0.796 0.0019 0.98 η(2,2)

1 | 2 0.20 0.202 0.0012 0.97

β11 | 1 −1.00 −1.105 0.1525 0.97 β21 | 1 1.00 1.011 0.1301 0.94

β11 | 2 1.00 1.082 0.0694 0.98 β21 | 2 −1.00 −1.025 0.0622 0.96

ϕ11 | 1 0.90 0.901 0.0008 0.98 ϕ11 | 2 0.10 0.101 0.0015 0.96

ϕ21 | 1 0.90 0.900 0.0013 0.97 ϕ21 | 2 0.10 0.101 0.0012 0.95

ϕ31 | 1 0.70 0.700 0.0009 0.96 ϕ31 | 2 0.30 0.298 0.0011 0.96

ϕ41 | 1 0.70 0.698 0.0015 0.94 ϕ41 | 2 0.30 0.297 0.0008 0.98

δ1 0.50 0.503 0.0007 0.94

Here, ζyim j jtk is the indicator function which has the value of 1 if yim j jt = k, otherwise 0. Note that there

are rm j − 1 and K j − 1 free parameters in ρ( j,t)
m j | c jt

and η( j,t)
t | s , respectively. Therefore, the score function

of the free parameters for ρ( j,t)
m j | c jt

and η( j,t)
t | s can be obtained as:

n∑
i=1

∂ log L(xi)

∂ρ( j,t)
m j | c jt

AT
rm j t

and
n∑

i=1

∂ log L(xi)

∂η( j,t)
t | s

AT
K j
,

where Ak is a (k − 1) × k matrix, composed of an identity matrix in the first k − 1 columns and a
column vector of −1 in the last column for m j = 1, . . . , M j, c jt = 1, . . . ,K j, j = 1, . . . , J, t = 1, . . . , T ,
and s = 1, . . . , S . Likewise, let ϕp | d = [ϕp1 | d, . . . , ϕprp | d]T , and δ = [δ1, . . . , δG]T be the vectorized ϕ-
and δ-parameters, respectively for p = 1, . . . , P, and d = 1, . . . ,G. The elements of the first-derivative
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vector with respect to ϕp | d and δ are obtained as:

n∑
i=1

∂ log L(xi)
∂ϕph | d

=

n∑
i=1

θi(d)ζziph

ϕph | d
,

n∑
i=1

∂ log L(xi)
∂δd

=

n∑
i=1

θi(d)

δd
.

Here, ζziph is the indicator function which has the value of 1 if zip = h, otherwise 0. Note that there are
rp − 1 and G − 1 free parameters in ϕp | d and δ, respectively. Therefore, the score function of the free
parameters for ϕp | d and δ can be obtained by

n∑
i=1

∂ log L(xi)
∂ϕp | d

AT
rp

and
n∑

i=1

∂ log L(xi)
∂δ

AT
G,

where Ak is a (k−1)×k matrix, composed of an identity matrix in the first k−1 columns and a column
vector of −1 in the last column for p = 1, . . . , P, d = 1, . . . ,G.

Appendix C: Elements of the Hessian matrix

The Hessian matrix is the second derivatives of the log-likelihood with respect to all free parameters
Θ. The second derivatives of log-observed data likelihood with respect to β and ρ( j,t)

m j jt | c jt
, η( j,t)

u , γd, and
ϕp | d are obtained as

n∑
i=1

∂2 log L(xi)
∂βqu | d∂βq′u′ | d′

=

n∑
i=1

xiqxiq′
{
ζdd′

[
ωi(u,d)

(
ζuu′ − γu | d(xi)

) − ωi(u,d′)γu | d(xi)
] − ωi(u′,d′)ωi(u,d)

}
,

n∑
i=1

∂2 log L(xi)
∂δd∂βqu | d′

=

n∑
i=1

xiq
{
(ζdd′ − θi(d))θ(u,d′) − γu | d′ (xi)θi(d)θi(d′)

}
∂δd

,

n∑
i=1

∂2 log L(xi)
∂ηc jt | u∂βqu′ | d

=

n∑
i=1

xiq

{
ζuu′θi(c jt ,u′,d) − θi(u′,d)θi(u,c jt) − γu′ | d(xi)

(
θi(c jt ,u,d) − θi(d)θi(u,c jt)

)}
∂η

( j,t)
c jt | u

,

n∑
i=1

∂2 log L(xi)
∂ϕph | d∂βqu | d′

=

n∑
i=1

xiq
{
θi(u,d′)(ζdd′ − θi(d)) − γu | d′ (xi)θi(d)θi(d′)

}
ζziph

ϕph | d
,

n∑
i=1

∂2 log L(xi)

∂ρ
( j,t)
m j j | c jt

∂βqu | d
=

n∑
i=1

xiq

{
θi(c jt ,u,d) − θi(u,d)θi(c jt) − γu | d(xi)

[
θi(c jt ,d) − θi(c jt)θi(d)

]}
ζyim j jtk

ρm jk jt | c jt

,

where ωi(u,d) = θi(u,d) − γu | d(xi)θi(d) for d = 1, . . . ,G, p = 1, . . . , P, h = 1, . . . , rp, m j = 1, . . . , M j,
k, k′ = 1, . . . rm j , c jt = 1, . . . ,K j, u, u′ = 1, . . . S , and j, j′ = 1, . . . , J. βS | d = [β1S | d, . . . , βLS | d] = 0,
u, u′ = 1, . . . , S − 1, and ζdd′ = 1 if d = d′, 0 otherwise.

The second derivatives of log-observed data likelihood with respect to γ are:

n∑
i=1

∂2 log L(xi)
∂γu | d∂γu′ | d′

= −
n∑

i=1

θi(u,d)θi(u′,d′)

γu | dγu′ | d′
,
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n∑
i=1

∂2 log L(xi)
∂δd∂γu | d′

=

n∑
i=1

(
ζdd′ − θi(d)

)
θi(u,d′)

δdγu | d′
,

n∑
i=1

∂2 log L(xi)

∂η
( j,t)
c jt | u∂γu′ | d

=

n∑
i=1

ζuu′θi(c jt ,u,d) − θi(c jt ,u)θi(u′,d)

η
( j,t)
c jt | u γu′ | d

,

n∑
i=1

∂2 log L(xi)
∂ϕph | d∂γu | d′

=

n∑
i=1

(
ζdd′ − θi(d)

)
θi(u,d′)ζziph

ϕph | dγu | d′
,

n∑
i=1

∂2 log L(xi)

∂ρ
( j,t)
m jk | c jt

∂γu | d
=

n∑
i=1

(
θi(c jt ,u,d) − θi(c jt)θi(u,d)

)
ζyim j jk

ρ
( j,t)
m jk | c jt

γu | d
,

for d = 1, . . . ,G, p = 1, . . . , P, h = 1, . . . , rp, m j = 1, . . . , M j, k, k′ = 1, . . . rm j , c jt = 1, . . . ,K j,
u, u′ = 1, . . . S , and j, j′ = 1, . . . , J. Here, ζyim j jk is an indicator function which has the value of 1 if
yim j j = k, 0 otherwise.

The second derivatives of log-observed data likelihood with respect to δ are:

n∑
i=1

∂2 log L(xi)
∂δd∂δd′

= −
n∑

i=1

θi(d)θi(d′)

δdδd′
,

n∑
i=1

∂2 log L(xi)

∂η
( j,t)
c jt | u∂δd

=

n∑
i=1

θi(c jt ,u,d) − θi(u,c jt)θi(d)

η
( j,t)
c jt | uδd

,

n∑
i=1

∂2 log L(xi)
∂ϕph | d∂δd′

=

n∑
i=1

(
ζdd′ − θi(d)

)
θi(d′)ζziph

ϕph | dδd′
,

n∑
i=1

∂2 log L(xi)

∂ρ
( j,t)
m jk | c jt

∂δd

=

n∑
i=1

(
θi(d,c jt) − θi(c jt)θi(d)

)
ζyim j jtk

ρ
( j,t)
m jk | c jt

δd

,

for d = 1, . . . ,G, p = 1, . . . , P, h = 1, . . . , rp, m j = 1, . . . , M j, k, k′ = 1, . . . rm j , c jt = 1, . . . ,K j,
u, u′ = 1, . . . S , and j, j′ = 1, . . . , J. Here, ζyim j jk is an indicator function which has the value of 1 if
yim j j = k, 0 otherwise.

The second derivatives of log-observed data likelihood with respect to η are:

n∑
i=1

∂2 log L(xi)

∂η
( j,t)
c jt | u∂η

( j′,t′)
c′j′ t′ | u′

=

n∑
i=1

θi(u,c jt ,c′j′ t′ )
ζuu′ (1 − ζ j′ jζt′t) − θi(u,c jt)θi(u′,c′j′ t′ )

η
( j,t)
c jt | u η

( j′,t′)
c′j′ t′ | u′

,

n∑
i=1

∂2 log L(xi)

∂ϕph | d∂η
( j,t)
c jt | u
=

n∑
i=1

(
θi(c jt ,u,d) − θi(u,c jt)θi(d)

)
ζziph

ϕph | dη
( j,t)
c jt | u

,

n∑
i=1

∂2 log Li

∂ρ
( j,t)
m jk | c jt

∂η
( j′,t′)
c′j′ t′ | u

=

n∑
i=1

(
1 − ζ j′ jζt′t

)
θi(u,c′j′ t′ ,c jt) + θi(u,c′j′ t′ )

(
ζc′j′ t′ c jt − θi(c jt)

)
ζym j jtk

η
( j′,t′)
c′j′ t′ | u

ρ
( j,t)
m jk | c jt

,

for c jt = 1, . . . ,K j, j = 1, . . . , J, t = 1, . . . ,T , d = 1, . . . ,G, and u, u′ = 1, . . . , S . Here, ζ j′ j is the
indicator function whose value is 1 if j = j′ and 0 otherwise.
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The second derivatives of log-observed data likelihood with respect to ϕ are:

n∑
i=1

∂2 log L(xi)
∂ϕph | d′∂ϕp′h′ | d′

=

n∑
i=1

θi(d)

{
(1 − ζdd′ ) + (1 − ζpp′ ) − θi(d′)

}
ζziphζzip′h′

ϕph | dρp′h′ | d′
,

n∑
i=1

∂2 log L(xi)

∂ρ
( j,t)
m jk | c jt

∂ϕph | d
=

n∑
i=1

(
θi(c jt ,d) − θi(c jt)θi(d)

)
ζziphζyim j jtk

ϕph | dρm jk jt | c jt

,

for p = 1, . . . , P, h = 1, . . . rp, d = 1, . . . ,G. Here, ζziph is an indicator function which has the value of
1 if zip = h, otherwise 0.

The second derivatives of log-observed data likelihood with respect to ρ are:

n∑
i=1

∂2 log L(xi)

∂ρ
( j,t)
m jk | c jt

∂ρ
( j′,t′)
m′j′ k

′ | c j′ t′

=

n∑
i=1

ζyim j jtkζyim′
j′ j′ t′ k′

ρ
( j,t)
m jk | c jt

ρ
( j′,t′)
m′j′ k

′ | c′j′ t′

[
θ

i
(
c jt ,c′j′ t′

) (1 − ζ j′ jζt′t

)
+ θi(c jt)

{
ζ j′ jζt′t

[(
1 − ζc jtc

′
j′ t′

)
+

(
1 − ζm jm

′
j′

)]
− θ

i
(
c′j′ t′

)}] ,
for k = 1, . . . , rm j , m j = 1, . . . , M j, k, k′ = 1, . . . rm j , c jt = 1, . . . ,K j, t, t′ = 1, . . . T , and j, j′ =
1, . . . , J. Here, ζyim j jk is an indicator function which has the value of 1 if yim j j = k, 0 otherwise.

Since
∑S

u=1 γu | d,
∑G

d=1 δd,
∑K j

c jt=1 η
( j,t)
c jt | u,

∑rm j

k=1 ρ
( j,t)
m jk | c jt

are all 1, all existing parameters are not free,
and thus we need to multiply the lagrange constraint matrix based on the chain rule. Note that there
are rp−1, rm j −1, S −1, and G−1 free parameters in ϕp | d, ρm j jt | c jt

, γd, and δ, respectively. Therefore,
the second derivatives of the free parameters can be obtained by n∑

i=1

∂ log L(xi)
∂π∗∂θ∗

 = AG

 n∑
i=1

∂ log L(xi)
∂π∂θ

 AT
K ,

where Ak is a (k − 1) × k matrix, composed of an identity matrix in the first k − 1 columns and a
column vector of −1 in the last column. π and θ represent the vector of parameters where dim(θ) = K,
dim(π) = G respectively, and π∗ and θ∗ vector of free parameters correspond to π, θ where dim(θ∗) =
K − 1, dim(π∗) = G − 1.
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