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Abstract

In this study, we propose an alternative method for discriminant analysis using a
multivariate empirical distribution function to express multivariate data as a simple
one-dimensional statistic. This method turns to be the estimation process of the opti-
mal threshold based on classification accuracy measures and an empirical distribution
function of data composed of classes. This can also be visually represented on a two-
dimensional plane and discussed with some measures in ROC curves, surfaces, and
manifolds. In order to explore the usefulness of this method for discriminant analysis
in the study, we conducted comparisons between the proposed method and the existing
methods through simulations and illustrative examples. It is found that the proposed
method may have better performances for some cases.

Keywords: Accuracy, AUC, classification, HUM, threshold, VUS.

1. Introduction

Discriminant analysis, which was developed by Fisher in the 1930s, is a multivariate analy-
sis method that classifies the characteristics of observations belonging toK (≥ 2) populations
and assigns new observations belonging to a specific population out of several populations
(Hong, 2012, p. 103). When a population is composed of samples extracted from several
classes, the discriminant analysis can be used to classify and identify which classes of indi-
viduals have been extracted, and the method has been studied in various ways (Critchley
and Vitiello, 1991; Fung, 1992; Fung, 1996; Jhun and Choi, 2009).

In order to apply the discriminant analysis to data, some constraints should be assumed.
For example, the linear and quadratic discriminant analyses resort to the normality. In
some situation which does not satisfy this assumption, an alternative discriminant anal-
ysis method is proposed using the multivariate empirical distribution function defined by
Hong et al. (2017). The multivariate empirical distribution function has the advantage that
multivariate data can be expressed as a one-dimensional distribution function. Therefore,
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a discriminant analysis data composed of several classes could be represented as a mixed
distribution consisting of multivariate empirical distribution functions for the number of
classes, and the discriminant analysis can be performed by estimating and identifying the
thresholds of the mixed distributions.

Similar to classifying with a discriminant function in existing discriminant analysis meth-
ods, this discriminant analysis method estimates classification points by using a multivariate
empirical distribution function of sample data that composes the mixed distribution. This is
performed using an optimal threshold maximizing the discriminant power and minimizing
the data loss. Furthermore, this discriminant method can be connected to various classifi-
cation accuracy measures to estimate the optimal threshold, and it is a useful method to
evaluate the classification performance of the mixed distribution model.

This method also provides a visual representation of the change in the classification and
misclassification rates of the model, so that it has the advantage of enabling a discussion
with ROC curves, surfaces and manifolds as well as AUC (area under ROC curve), VUS
(volume under the ROC surface), and HUM (hyper-volume under the ROC manifold), which
are commonly used in credit evaluation and medical statistics.

The study of the optimal threshold in the mixed distribution model depends on the number
of classes in the data. For example, it is assumed that a parameter space is divided into two
classes named ‘Bad (or default)’ and ‘Good (or non-default)’. This can be expressed as a
2×2 confusion matrix in order to compare classes in which each object actually belongs and
classes resulting from the predicted results. The ROC curve can be expressed when the TPR
(true positive rate; or recall, sensitivity) and FPR (false positive rate; or false alarm rate,
1-specificity) respectively correspond to the X and Y axes of the graph (Pepe, 2003; Tasche,
2006). In addition, the AUC statistic is determined that the mixed distribution model is
better classified as its value is closer to 1.

There are well known classification accuracy measures such as the J index of Youden
(1950), the TA (total accuracy) of Lambert and Lipkovich (2008), the amended closest to
(0, 1) of Perkins and Schisterman (2006) and others. In this study, we use the TR (true
rate) of Hong and Joo (2010) and BA (balanced accuracy) of Velez et al. (2007) which are
the arithmetic mean of the sensitivity and specificity. The TR has an advantage in terms
of the accuracy because the sum of the misclassifications is smaller than for TA, and it has
a linear relationship with the J index, amended closest to (0, 1), and Kolmogorov-Smirnov
statistic (Yoo and Hong (2011) for more detail).

Next, when the class is divided into three categories, the ROC surface in three-dimensional
space can be expressed. The VUS is the statistic whose value is between 1⁄6 and 1, and the
closer it gets to 1, the higher the classification models’ discriminant power becomes. In
this case, J3, AC3, and TR3 are defined as the classification accuracy by expanding the
method for two classes (Hong and Jung, 2013), and TR3 is used as a classification accuracy
measure for three classes in this study. When there are more than four classes in a sample,
the ROC manifold can be extended and constructed in a similar manner. In addition, the
discriminant power can be calculated using the HUM which is a classification accuracy
measure for multidimensional space (Hong and Jung, 2014). In this study, we will not discuss
when there are four or more classes in a sample, but this can be extended to the concepts
and methods discussed above.

This paper consists of 4 sections. Section 2 briefly explains the multivariate empirical dis-
tribution function proposed by Hong et al. (2017) and proposes a process of discriminant
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analysis using a multivariate empirical distribution function. In Section 3, we perform the
proposed discriminant analyses for various kinds of simulation and illustrative examples,
and we also explore the advantages and disadvantages via comparison with existing discrim-
inant analysis. Finally, Section 4 summarizes the results of this study and discusses further
research.

2. Alternative discriminant analysis

Assuming that the cumulative distribution function for the p (≥ 2)-variate random sample
of size n, {(X1i, . . . , Xpi), i = 1, . . . , n} is estimated as F̂ (x1, . . . , xp), Hong et al. (2017)
defined the multivariate empirical distribution function as

F̂n ≡ F̂n(x1, . . . , xp) =
1

n

n∑
i=1

I(F̂i ≤ f),

where the random variable F̂i = F̂ (X1i, . . . , Xpi) and f is a constant value of F (x1, . . . , xp).

The ith random sample vector in kth class with sample size nk is expressed as {Xi
k =

(Xk
1i, . . . , X

k
pi), i = 1, . . . , nk, k = 1, . . . ,K}. When the mean vector and the variance-

covariance matrix of the class k are µ̂k and Σ̂k respectively, the weighted mean vector µ̂
is
∑K

k=1 λkµ̂k and the alternative pooled variance-covariance matrix Σ̂ of the whole sample
can be proposed such as

Σ̂ = [
1

pK

K∑
k=1

(λkΣ̂k)−1]−1,

where λk = nk/
∑K

k=1 nk. The alternative discriminant analysis using the multivariate em-
pirical distribution function is performed in the following steps.

Table 2.1 Illustrative data
(X,Y ) Class F̂i F̂ 1

n1
F̂ 2
n2

1 (5.04, 2.78) 1 0 0.1 0
2 (4.12, 3.53) 1 0.0011 0.2 0
3 (3.06, 4.63) 1 0.0057 0.3 0
4 (3.31, 4.49) 1 0.0085 0.4 0
5 (3.14, 4.76) 2 0.0094 0.4 0.09
6 (4.18, 4.10) 1 0.0148 0.5 0.09
7 (3.58, 5.29) 1 0.0597 0.6 0.09
8 (3.69, 5.09) 1 0.0623 0.7 0.09
9 (4.81, 4.51) 1 0.1024 0.8 0.09
10 (4.51, 4.86) 1 0.1662 0.9 0.09
11 (5.53, 4.58) 1 0.1722 1 0.09
12 (4.71, 5.13) 2 0.3035 1 0.18
13 (4.41, 5.75) 2 0.3451 1 0.27
14 (4.66, 5.33) 2 0.3572 1 0.36
15 (4.69, 5.78) 2 0.4771 1 0.45
16 (4.96, 5.49) 2 0.5184 1 0.55
17 (4.92, 6.65) 2 0.6420 1 0.64
18 (6.01, 5.49) 2 0.7401 1 0.73
19 (5.46, 6.24) 2 0.8416 1 0.82
20 (6.57, 5.70) 2 0.8585 1 0.91
21 (6.03, 6.45) 2 0.9577 1 1

Figure 2.1 (F̂i, F̂
k
nk

) plot
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Discriminant analysis using empirical distribution function

Step 1. For ith random sample vector xi
k, the normal cumulative distribution

function,
F̂i ≡ Φ(xi

k; µ̂, Σ̂), i = 1, . . . , n1, . . . , nK ,

is estimated with the sample’s weighted mean vector µ̂ and the sample’s
variance-covariance matrix Σ̂.

Step 2. The empirical distribution function of k class, F̂ k
nk

, is calculated as follows.

F̂ k
nk

= F̂ (xi
k) =

1

nk

nk∑
j=1

I(F̂j ≤ f), i = 1, . . . , nk.

Step 3. The discriminant analysis is performed using {(F̂i, F̂
k
nk

), k = 1, . . . ,K}.
Among many classification accuracy measures, the threshold could be deter-
mined using the following true rate:

TRk =
2

k
[

k−1∑
i=1

TRi,i+1 −
(k − 2)

2
] for all K classes,

where TRa,b is the true rate for F̂ a
na

and F̂ b
nb

.

We assume random sample of size 21 in the second column of Table 2.1, which consists
of 10 (= n1) samples in Class 1 and 11 (= n2) samples in Class 2 (K = 2) to understand
the discriminant analysis proposed in this study. The normal cumulative distribution {F̂i =
Φ(xi, yi; µ̂, Σ̂), i = 1, . . . , 21} is shown in the fourth column of Table 2.1 using the weighted

mean vector µ̂ =
(
4.638 5.078

)T
and variance-covariance matrix Σ̂ =

(
0.5896 0.0413
0.0413 0.3230

)
.

In Step 2, the bivariate empirical distribution function of the kth class, {F̂ k
nk
, k = 1, 2},

corresponding to F̂i is obtained and summarized in the fifth and sixth columns of Table 2.1.
Note that F̂ 1

n1
increases by 0.1 (= 1/n1) if the sample belongs to Class 1, and F̂ 2

n2
increases

by 0.09 (= 1/n2) if the sample belongs to Class 2.
In Step 3, we used the classification accuracy TR in this study to discriminate using F̂ k

nk
.

The TR is defined as the maximum of the arithmetic mean of the sensitivity and specificity,
that can be represented as F̂ 1

n1
and (1− F̂ 2

n2
), respectively, in Table 2.1 (see Hong and Joo

(2010) for more detail). And for K = 2, 3, and 4, the TR could be derived as the followings
:

TR2 = TR1,2 for K = 2,

TR3 =
2

3
(
∑2

i=1
TRi,i+1 −

1

2
) for K = 3,

TR4 =
2

4
(
∑3

i=1
TRi,i+1 − 1) for K = 4.

And the TR has the following linear relationship with J index, amended closest to (0,1)
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(AC) and Kolmogorov-Smirnov (KS) statistics:

TR = 1
2 (1 + J)

= 1
2 (1 + KS), where J = KS = max[F̂ 1

n1
− F̂ 2

n2
],

= 1− 1
2AC, where AC =

√√√√√ (F̂ 2
n2

)2 + (1− F̂ 1
n1

)2

(
F̂ 2

n2

1−F̂ 1
n1

+F̂ 2
n2

)2 + (
F̂ 1

n1

1−F̂ 1
n1

+F̂ 2
n2

)2
= min[1− F̂ 1

n1
+ F̂ 2

n2
].

Therefore, Class 1 and 2 are classified at the 11th sample with a maximum TR value of
0.954 (= (1.0+(1−0.09))/2). In Figure 2.1, F̂i and F̂ k

nk
are represented as two step functions

and a dotted vertical line on the F̂11 is shown as the maximum value for TR.
The result of the discriminant analysis using a multivariate empirical distribution function

for the sample in Table 2.1 is found with only the 5th sample of Class 2 (3.14, 4.76), which is
incorrectly classified as Class 1, the misclassification error rate is just 0.04762 (= 1/(n1+n2)).
And the TPR (= 10/10) and FPR (= 1/11) can be obtained, so that TR appears as
0.954 (= (10/10 + 10/11)/2), which is the same value obtained for Figure 2.1. From these
results, it is found that discriminant analysis using empirical distribution is related to ROC
curve.

3. Comparison with simulated and illustrative examples

3.1. Simulation results when K = 2

We assume three models with two classes as follows:

(Model 1) x1 ∼ N

((
2
2

)
,

(
1 0.1

0.1 1

))
, x2 ∼ N

((
4
4

)
,

(
1 0.1

0.1 1

))
(Model 2) x1 ∼ N

((
2
2

)
,

(
1 0.6

0.6 1.2

))
, x2 ∼ N

((
4
4

)
,

(
1 0.7

0.7 0.9

))
(Model 3) x1 ∼ N

((
2
2

)
,

(
1 0.5

0.5 1

))
, x2 ∼ N

((
4
5

)
,

(
0.9 -0.7
-0.7 0.8

))

The three models are used for a comparison of results of the proposed discriminant analysis
and an existing discriminant analysis by performing a Monte Carlo simulation. The sizes of
Class 1 and 2 are 20 (= n1) and 30 (= n2), respectively, and the number of iterations is set
to 1,000. The existing discriminant analysis performs LDA or QDA whether a homogeneity
of variance test is satisfied. And the comparison of the two methods is performed by APER
(apparent error rate = the number of errors / the number of total observations).

Figure 3.1 shows the scatter plots, graphs for (F̂ 2
n2
, F̂ 1

n1
) and {(F̂i, F̂

k
nk

), k = 1, 2} for each

model. It is found that the graphs of the empirical distribution function (F̂ 2
n2
, F̂ 1

n1
) in the

middle of Figure 3.1 are expressed as ROC curves. Using the ROC curve in Figure 3.1, it is
possible to measure the discrimination power using the AUC statistic. The AUCs for models
1 to 3 are 97.0%, 91.8% and 99.7%, respectively. Hence one can say that the discriminant
powers are very well since these values of AUC are close to 1.
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Figure 3.1 Scatter plot, ROC curve, and (F̂i, F̂
k
nk

) plot

The right graphs depict the step functions through F̂i and F̂ k
nk

. They enable comprehensive
and objective comparisons of the samples. The final results for the comparison are shown in
Table 3.1 by using the mean and standard deviation according to the type of models and
discriminant analysis methods. The sums of the misclassification are also shown through
each discriminant analysis, and in the case of Model 1, the number of misclassifications
of the discriminant analysis using multivariate empirical distributions is 0.716 (= 4.040 −
3.324), which is less than the existing discriminant analysis. Similarly, in Model 2 and 3,
the numbers of misclassifications of the proposed discriminant analysis in the study are
1.046 (= 6.058− 5.012) and 0.064 (= 1.448− 1.384), respectively. In addition, the standard
deviation of the simulations is also generally small.

Exploring above results through TR, we found that the TRs in the proposed discriminant
analysis are better than in existing discriminant analysis. The TR in the proposed discrim-
inant analysis according to a Model 1 is obtained as 0.934 (= (18.704/20 + 27.972/30)/2),
whereas it appears as 0.917 (= (17.920/20 + 28.130/30)/2) in the case of existing discrimi-
nant analysis. And the TRs of Model 2 and 3 have 0.899 and 0.971 for the proposed method,
while those of Model 2 and 3 have 0.871 and 0.963, respectively. As a result of this simu-
lation, the discriminant analysis using the multivariate empirical distribution could be seen
to be well discriminated.
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Table 3.1 Comparison of discriminant analyses when K =2

Actual
Misclassification

Class 1 Class 2

Model 1

Proposed
discriminant analysis

Class 1
18.704 2.028

3.324
(1.264) (1.683)

Class 2
1.296 27.972

(1.264) (1.683)

Existing
discriminant analysis

Class 1
17.920 1.856

4.040
(1.306) (1.167)

Class 2
2.080 28.130

(1.331) (1.269)

Model 2

Proposed
discriminant analysis

Class 1
17.940 2.952

5.012
(1.523) (1.864)

Class 2
2.060 27.048

(1.523) (1.864)

Existing
discriminant analysis

Class 1
16.662 2.720

6.058
(1.641) (1.451)

Class 2
3.338 27.280

(1.641) (1.451)

Model 3

Proposed
discriminant analysis

Class 1
19.320 0.704

1.384
(0.841) (0.914)

Class 2
0.680 29.269

(0.841) (0.914)

Existing
discriminant analysis

Class 1
18.552 0.000

1.448
(1.060) (0.000)

Class 2
1.448 30.000

(1.060) (0.000)

3.2. Simulation results when K = 3

We assume the following two models in the case of three classes. The data from 100
samples (30, 40, and 30 samples of each class) are used, and simulations are performed in
the analogous methods, as shown in Section 3.1.

(Model 1) x1 ∼ N

((
2
2

)
,

(
1 0.2
0.2 1

))
, x2 ∼ N

((
4
4

)
,

(
1 0.3
0.3 1

))
, x3 ∼ N

((
6
6

)
,

(
1 0.4
0.4 1

))
(Model 2) x1 ∼ N

((
2
3

)
,

(
0.9 -0.8
-0.8 0.9

))
, x2 ∼ N

((
3
5

)
,

(
1 0.5
0.5 1

))
, x3 ∼ N

((
5
7

)
,

(
0.6 -0.4
-0.4 0.8

))

To visually display the assumed models, the scatter plots of each model and the graphs of
{(F̂i, F̂

k
nk

), k = 1, 2, 3} are shown respectively on the left and right sides of Figure 3.2. Based
on the right graph in Figure 3.2, the proposed discriminant analysis makes it possible for an
optimal classification criterion since three empirical distribution function graphs (F̂i, F̂

k
nk

)
for each class are represented by three non-decreasing functions.

The results for the three classes are summarized in Table 3.2, which shows the mean and
standard deviation, and the sum of the misclassifications according to each model. In the
case of Model 1, the difference of the misclassification errors in the proposed discriminant
analysis and the existing discriminant analysis is 1.676 (= 14.362− 12.686). In Model 2, we
also found that the difference in the misclassification errors is 0.99 (= 10.988−9.998), which
means that the proposed discriminant analysis has fewer misclassification errors than that
of existing ones.

From a perspective of TR3 (= 2(TR12 + TR23 − 1/2)/3), TR3 in proposed discriminant
analysis is 0.880 (= 2((27.496/30 + 36.470/40)/2 + (36.140/40 + 27.184/30)/2 − 1/2)/3),
which is greater than TR3 value in existing discriminant analysis of 0.859 (= 2((26.388/30+
36.542/40)/2 + (36.708/40 + 26.006/30)/2 − 1/2)/3) in case of Model 1. Also, in Model 2
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Table 3.2 Comparison of discriminant analyses when K =3

Actual
Misclassification

Class 1 Class 2 Class 3

Model 1

Proposed
discriminant analysis

Class 1
27.496 3.503 0.006

12.686

(1.803) (2.296) (0.077)

Class 2
2.494 32.640 2.816

(1.803) (3.223) (1.912)

Class 3
0.010 3.830 27.178

(0.099) (2.381) (1.912)

Existing
discriminant analysis

Class 1
26.388 3.458 0.006

14.362

(1.695) (1.513) (0.077)

Class 2
3.612 33.250 3.994

(1.695) (2.284) (1.721)

Class 3
0.000 3.292 26.000

(0.000) (1.612) (1.721)

Model 2

Proposed
discriminant analysis

Class 1
29.730 3.736 0.000

9.998

(0.560) (1.951) (0.000)

Class 2
0.270 31.968 1.696

(0.560) (2.868) (1.435)

Class 3
0.000 4.296 28.304

(0.000) (2.301) (1.435)

Existing
discriminant analysis

Class 1
29.678 6.122 0.000

10.988

(0.648) (1.813) (0.000)

Class 2
0.322 29.516 0.182

(0.648) (2.526) (0.488)

Class 3
0.000 4.362 29.818

(0.000) (1.536) (0.449)

Figure 3.2 Scatter plot and (F̂i, F̂
k
nk

) plot

the result of TR3 (= 0.911) proposed in this study are slightly better than TR3 (= 0.907)
of existing method .

The multivariate empirical distribution functions F̂ 1
n1

, F̂ 2
n2

, and F̂ 3
n3

could be used to ex-
press the ROC surfaces. The discrimination power in the three-dimensional ROC surfaces
can be measured using the VUS, and it can be seen that the discrimination power is rea-
sonably good because the VUSs are obtained as 84.2% and 65.2%, respectively.

With the results of this simulation, the proposed discrimination analysis method has
better performances than the existing discriminant method. The standard deviations of the
proposed discriminant analysis in Table 3.2 are generally large, so it might be said that the
proposed method is more sensitive to the data even for the three classes.
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3.3. Illustrative example when K = 2

We explore the results of two methods for some illustrative examples in the case of 2 and
3 classes. For annual financial data of bankrupt and solid companies (Johnson and Wichern,
2007, p. 657), the proposed discriminant analysis method is used, and this result is compared
to that of the existing method. The data is made of four kinds of random financial variables
with two classes (default and non-default).

Figure 3.3 represents the graph of the normal distribution function F̂i and the multivariate
empirical distribution function {F̂ k

nk
, k = 1, 2} for the financial illustrative example. As the

value of F̂i increases, the differences between F̂ 1
n1

and F̂ 2
n2

becomes larger and larger, so it
seems to be clearly divided into two classes. Calculating a TR to discriminate between two
classes, it is found that Class 1 and 2 are classified at F̂11 (= 0.038) with the maximum TR
of 0.8209, and a dotted vertical line on the F̂11 is represented in Figure 3.3. Also the same
value of the TR can be obtained as 0.8209 (= (16/21 + 22/25)/2) for Table 3.3.

Table 3.3 shows the results of two discriminant analysis methods: one is the method
proposed in this study and the other is an existing method using the cross-validation after a
test for homogeneity of the variance-covariance matrix for all independent variables. Based
on Table 3.3, whereas the number of misclassifications is 8 and the well-classification rates of
Class 0 and 1 are respectively 86% and 80% for the proposed method, the existing method
has results with the number of misclassification of 8 and well-classification rate of Class 0
and 1 of 86% and 92%, respectively. Therefore, unlike what we expected, the existing method
has better results than those of the proposed method in the example with financial data.

Figure 3.3 (F̂i, F̂
k
nk

) plot for Bankruptcy data

Table 3.3 Comparison of discriminant analyses when K=2

Actual
Class 1 Class 2

Proposed
discriminant analysis

Class 1 16 3
Class 2 5 22

Existing
discriminant analysis

Class 1 18 2
Class 2 3 23

3.4. Illustrative example when K = 3

The Concho Water Snake data (Johnson and Wichern, 2007, p. 667) consists of ‘Tail
Length’ and ‘Snout to Vent Length’ variables with K = 3 (the gender variable is not used).

The graph of F̂i and {F̂ k
nk
, k = 1, 2, 3} is shown in Figure 3.4 and the result of the

comparative analysis for each method are shown in Table 3.4. The existing discriminant
analysis to be compared is performed in the same method, as shown in Section 3.3. The
horizontal differences among the three F̂ k

nk
in Figure 3.4 are wider than the differences

in Figure 3.3, meaning that a high discriminant power can be expected. A classification
accuracy TR12 and TR23, which are the component of the linear relationship of TR3, allow
to discriminate between three classes. The maximum values of the TR12 and TR23 are 0.8744
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at F̂21 (= 0.049) and 0.923 at F̂39 (= 0.292), respectively. In Figure 3.4, dotted vertical lines
on the F̂21 and F̂39 are shown. In addition, TR12 and TR23 can have the same value as
0.874 (= (16/17 + (1− 5/26))/2) and 0.923 (= (22/26 + (1− 0/23))/2) for method propose
in this study for Table 3.4.

Table 3.4 shows that the number of misclassifications is 10, and the classification accuracies
for Class 1, 2, and 3 are 94%, 65% and 100%, respectively, for the proposed method. On the
other hand, the existing method has results in which the number of misclassification is 11,
and the classification accuracies of Class 1, 2, and 3 are 76%, 81%, and 91%, respectively. In
this example, we can find that the proposed method can be seen to have better performances
than the existing method.

Figure 3.4 (F̂i, F̂
k
nk

) plot for Snake data

Table 3.4 Comparison of discriminant analyses when K=3

Actual
Class 1 Class 2 Class 3

Proposed
discriminant analysis

Class 1 16 5 0
Class 2 1 17 0
Class 3 0 4 23

Existing
discriminant analysis

Class 1 13 2 0
Class 2 4 21 2
Class 3 0 3 21

4. Conclusion

The discriminant analysis is a useful statistical technique that has been studied from
various perspectives as a method of discriminating between classes using information of
variables and determining which classes belong to a new object. In this study, we propose
an alternative discriminant analysis method using the multivariate empirical distribution
function of Hong et al. (2017), which could express multivariate data as a simple one-
dimensional statistic.

This discriminant analysis method consists of the following process. For discriminant anal-
ysis data composed of K (≥ 2) classes, the univariate normal distribution functions are
estimated using a weighted mean vector and the variance-covariance matrix, and the K
empirical distribution functions corresponding to each class are obtained. We then draw a
graph expressed by the normal distribution function and the empirical distribution func-
tions, which explains some characteristics of each distribution. Also, the ROC curve when
K = 2 and the ROC surface when K = 3 could be displayed with empirical distribution
functions. Therefore, the discriminant analysis method can be regarded as determining the
optimal threshold using various classification accuracy measures, including the TR.

Monte Carlo simulations in various mixed models and illustrative examples when K = 2
and 3 are explored to evaluate the two discriminant methods. We compare the results of the
existing discriminant analysis method to that of method proposed in this study. In general,
the proposed method might be found to have fewer misclassifications than the existing
method for data fitted to a normal distribution.
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Nonetheless, one cannot definitively conclude that the proposed method has better perfor-
mances than the existing discrimination analysis due to the illustrative example in Section
3.3. In particular, when the empirical distribution functions for each class are almost the
same, the proposed method has poor misclassification error rate. For example, if two random
samples are generated from (N((−1, 1)T, I2), N((1,−1)T, I2)), then the misclassification er-
ror rates for the proposed discriminant method are very close to 0.5, since the empirical
distribution functions for each class are almost the similar. However, this research has sig-
nificance in that we have implemented a method applying the empirical distribution function
defined by Hong et al. (2017). This discriminant analysis using a multivariate empirical distri-
bution function needs to consider many data sets followed by various distribution functions,
and we will extend this work in future research.
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