• Title/Summary/Keyword: Multipole Moment

Search Result 7, Processing Time 0.027 seconds

Algorithm and Implementation of Fast Multipole Boundary Element Method with Theoretical Analysis for Two-Dimensional Heat Conduction Problems (2차원 열전도 문제에 대한 Fast Multipole 경계요소법의 이론과 실행 알고리즘의 분석)

  • Choi, Chang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.441-448
    • /
    • 2013
  • This paper presents the fast multipole boundary element method (FM-BEM) as a new BEM solution methodology that overcomes many disadvantages of conventional BEM. In conventional BEM, large-scale problems cannot be treated easily because the computation time increases rapidly with an increase in the number of boundary elements owing to the dense coefficient matrix. Analysis results are obtained to compare FM-BEM with conventional BEM in terms of computation time and accuracy for a simple two-dimensional steady-state heat conduction problem. It is confirmed that the FM-BEM solution methodology greatly enhances the computation speed while maintaining solution accuracy similar to that of conventional BEM. As a result, the theory and implementation algorithm of FM-BEM are discussed in this study.

Paratic Impedance Extraction of FC-PGA Package Pin using the Static Fast Multipole Method (Static FMM을 이용한 FC-PGA 패키지 핀에서의 기생 임피던스 추출)

  • 천정남;이정태;어수지;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1076-1085
    • /
    • 2001
  • In this paper, the FMM(Fast Multipole Method) combined with GMRES(Generalized Minimal RESidual Method) matrix solver is used to extract the parasitic impedance for complicated 3-D structures in uniform dielectric materials which limit the use of MoM(Method of Moment) due to its large computation time and memory requirement. This algorithm is a fast multipole-accelerated method based on quasistatic analysis and is very efficient for computing impedance between conductors. This paper proved the accuracy and efficiency of the FMM by comparing with MoM in simple examples. Finally the parasitic impedance of FC-PGA(Flip Chip Pin Grid Array) Package pins has been extracted by this algorithm and we have considered the possibility of the EMI/EMC problem caused by the signal interference.

  • PDF

Numerical Experiments using Efficient FMM for the EM Scattering by Underground Object (지하물체 탐지를 위한 FMM 기반의 효율적인 수치 해석 연구)

  • Kim, Sung-Hwan;Ahn, Chang-Hoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1790-1795
    • /
    • 2009
  • For GPR(Ground Penetrating Radar) applications, an accurate analysis of the scattered field is necessary to identify the unknown target. Dyadic Green's function of the multilayered medium is developed and applied to analysis of the underground conducting object. We used method of moment(MOM) with dyadic Green's function, and Discrete Complex Image Method(DCIM). To reduce the computational complexity, fast multipole method is introduced and we showed the accuracy of the method comparing with the conventional method of moment. For investigating the underground conducting target, several numerical experiments were accomplished using this method.

Meaning and Definition of Partial Charges (부분 전하의 의미와 정의)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • Partial charge is an important and fundamental concept which can explain many aspects of chemistry. Since a molecule can be regarded as neclei surrounded by electron cloud, there is no way to define a partial charge accurately. Nevertheless, there have been many attempts to define these seemingly impossible parameters, since they would facilitate the understanding of molecular properties such as molecular dipole moment, solvation, hydrogen bonding, molecular spectroscopy, chemical reaction, etc. Common methods are based on the charge equalization, orbital occupancy, charge density, and electric multipole moments, and electrostatic potential fitting. Methods based on the charge equalization using electronegativity are very fast, and therefore they have been used to study many compounds. Methods to subdivide orbital occupancy using basis set conversion, relies on the notion that molecular orbitals are composed of atomic orbitals. The main idea is to reduce overlap integral between two nuclei using converted orthogonal basis sets. Using some quantum mechanical observables like electrostatic potential or charge multipole moments. Using potential grids obtained from wavefunction, partial charges can be fitted. these charges are most useful to describe intermolecular electrostatic interactions. Methods to using dipole moment and its derivatives, seems to be sensitive the level of theory, Dividing electron density using density gradient being the most rigorous theoretically among various schemes, bears best potential to describe the charge the most adequately in the future.

FMM for the electromagnetic analysis of PCB (PCB의 EM해석을 위한 FMM)

  • Oh, Se-Jun;Oh, Jae-Hyun;Ahn, Chang-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.111-112
    • /
    • 2008
  • Induced electromagnetic fields of printed circuit board are computed using method of moment. In this calculation PEC and dielectric boards are considered when exposed to the external fields. The volume and surface integral equations are presented for the electromagnetic wave scattering from plate structures composed of dielectric and conducting objects. To reduce the computing time a fast multipole technique is applied.

  • PDF

Fast Analysis of Fractal Antenna by Using FMM (FMM에 의한 프랙탈 안테나 고속 해석)

  • Kim, Yo-Sik;Lee, Kwang-Jae;Kim, Kun-Woo;Oh, Kyung-Hyun;Lee, Taek-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.121-129
    • /
    • 2008
  • In this paper, we present a fast analysis of multilayer microstrip fractal structure by using the fast multipole method (FMM). In the analysis, accurate spatial green's functions from the real-axis integration method(RAIM) are employed to solve the mixed potential integral equation(MPIE) with FMM algorithm. MoM's iteration and memory requirement is $O(N^2)$ in case of calculation using the green function. the problem is the unknown number N can be extremely large for calculation of large scale objects and high accuracy. To improve these problem is fast algorithm FMM. FMM use the addition theorem of green function. So, it reduce the complexity of a matrix-vector multiplication and reduce the cost of calculation to the order of $O(N^{1.5})$, The efficiency is proved from comparing calculation results of the moment method and Fast algorithm.

An NMR Study of Solvent Interactions in a Paramagnetic System

  • Golding, R.M.;Pascual, R.O.;Suvanprakorn, C.;Dance, I.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1752-1756
    • /
    • 2006
  • This study explores and interprets in a new way the complex solvent and the temperature dependence of the NMR shifts for the N-$CH_2$ protons in tris(N,N-diethyldithiocarbamato) iron(III) in acetone, benzene, carbon disulfide, chloroform, dimethylformamide and pyridine. The NMR shifts are interpreted in terms of the Fermi contact interaction and the dipolar term from the multipole expansion of the interaction of the electron orbital angular momentum and the electron spin dipolar-nuclear spin angular momentum. This analysis yields a direct measure of the effect of the solvent system on the environment of the transition metal ion. The results are analysed in terms of the crystal field environment of the transition metal ion with contributions from (a) the dithiocarbamate ligand (b) the solvent molecules and (c) the interaction of the effective dipole moment of the polar solvent molecule with the transition metal ion complex.