• Title/Summary/Keyword: Multiplication ideals

Search Result 19, Processing Time 0.022 seconds

ON FUZZY PRIME SUBMODULES OF FUZZY MULTIPLICATION MODULES

  • Lee, Dong-Soo;Park, Chul-Hwan
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • In this paper, we will introduce the concept of fuzzy mulitplication module. We will define a new operation called a product on th family of all fuzzy submodules of a fuzzy mulitplication module. We will define a fuzzy subset of the idealization ring R+M and find some relations with the product of fuzzy submodules and product of fuzzy ideals of the idealization ring R+M. Some properties of weakly fuzzy prime submoduels and fuzzy prime submodules which are de ned by T.K.Mukherjee M.K.Sen and D.Roy will be introduced. We will investigate some properties of fuzzy prime submodules of a fuzzy multiplication module.

A NEW CHARACTERIZATION OF PRÜFER v-MULTIPLICATION DOMAINS

  • CHANG, GYU WHAN
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.631-636
    • /
    • 2015
  • Let D be an integral domain and w be the so-called w-operation on D. In this note, we introduce the notion of *(w)-domains: D is a *(w)-domain if $(({\cap}(x_i))({\cap}(y_j)))_w={\cap}(x_iy_j)$ for all nonzero elements $x_1,{\ldots},x_m$; $y_1,{\ldots},y_n$ of D. We then show that D is a $Pr{\ddot{u}}fer$ v-multiplication domain if and only if D is a *(w)-domain and $A^{-1}$ is of finite type for all nonzero finitely generated fractional ideals A of D.

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

연산자로서의 유리수 체계의 구성에 관한 연구

  • Chung, Young-Woo;Kim, Boo-Yoon
    • East Asian mathematical journal
    • /
    • v.28 no.2
    • /
    • pp.135-158
    • /
    • 2012
  • The ideals of the rings of integers are used to induce rational number system as operators(=group homomorphisms). We modify this inducing method to be effective in teaching rational numbers in secondary school. Indeed, this modification provides a nice model for explaining the equality property to define addition and multiplication of rational numbers. Also this will give some explicit ideas for students to understand the concept of 'field' efficiently comparing with the integer number system.

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo;Pavicevic, Zarko
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-420
    • /
    • 2011
  • In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.

EXTENSIONS OF NAGATA'S THEOREM

  • Hamed, Ahmed
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.797-808
    • /
    • 2018
  • In [1], the authors generalize the concept of the class group of an integral domain $D(Cl_t(D))$ by introducing the notion of the S-class group of an integral domain where S is a multiplicative subset of D. The S-class group of D, $S-Cl_t(D)$, is the group of fractional t-invertible t-ideals of D under the t-multiplication modulo its subgroup of S-principal t-invertible t-ideals of D. In this paper we study when $S-Cl_t(D){\simeq}S-Cl_t(D_T)$, where T is a multiplicative subset generated by prime elements of D. We show that if D is a Mori domain, T a multiplicative subset generated by prime elements of D and S a multiplicative subset of D, then the natural homomorphism $S-Cl_t(D){\rightarrow}S-Cl_t(D_T)$ is an isomorphism. In particular, we give an S-version of Nagata's Theorem [13]: Let D be a Krull domain, T a multiplicative subset generated by prime elements of D and S another multiplicative subset of D. If $D_T$ is an S-factorial domain, then D is an S-factorial domain.

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.

Algorithm for Computing J Relations in the Monoid of Boolean Matrices (불리언 행렬의 모노이드에서의 J 관계 계산 알고리즘)

  • Han, Jae-Il
    • Journal of Information Technology Services
    • /
    • v.7 no.4
    • /
    • pp.221-230
    • /
    • 2008
  • Green's relations are five equivalence relations that characterize the elements of a semigroup in terms of the principal ideals. The J relation is one of Green's relations. Although there are known algorithms that can compute Green relations, they are not useful for finding all J relations in the semigroup of all $n{\times}n$ Boolean matrices. Its computation requires multiplication of three Boolean matrices for each of all possible triples of $n{\times}n$ Boolean matrices. The size of the semigroup of all $n{\times}n$ Boolean matrices grows exponentially as n increases. It is easy to see that it involves exponential time complexity. The computation of J relations over the $5{\times}5$ Boolean matrix is left an unsolved problem. The paper shows theorems that can reduce the computation time, discusses an algorithm for efficient J relation computation whose design reflects those theorems and gives its execution results.

On Efficient Algorithms for Generating Fundamental Units and their H/W Implementations over Number Fields (효율적인 수체의 기본단수계 생성 알고리즘과 H/W 구현에 관한 연구)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1181-1188
    • /
    • 2017
  • The unit and fundamental units of number fields are important to number field sieves testing primality of more than 400 digits integers and number field seive factoring the number in RSA cryptosystem, and multiplication of ideals and counting class number of the number field in imaginary quadratic cryptosystem. To minimize the time and space in H/W implementation of cryptosystems using fundamental units, in this paper, we introduce the Dirichlet's unit Theorem and propose our process of generating the fundamental units of the number field. And then we present the algorithm generating our fundamental units of the number field to minimize the time and space in H/W implementation and implementation results using the algorithm over the number field.