• Title/Summary/Keyword: Multiple layers

Search Result 496, Processing Time 0.026 seconds

UNIVERSAL DISPERSION EQUATION FOR MAGNETOSTATIC WAVES(MSW)

  • Wenzhong, Hu
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.383-386
    • /
    • 1995
  • A universal dispersion equation for magnetostatic waves(MSW) propagating in the film with arbitrary-multiple magnetic layers magnetized in an arbitrary direction was derived with a matching boundary condition method. The computing result curves of delay time were shown.

  • PDF

Fabrication of oxide buffer layers for coated conductors (MOD 공정에 의한 산화물 완충층 제조)

  • Km Young-Kuk;Yoo Jai-Moo;Ko Jae-Woong;Chung Kuk-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.37-40
    • /
    • 2006
  • Oxide buffer layers for YBCO coated conductors were fabricated using MOD processing and development of microstructure and texture were investigated. A $CeO_2$ buffer layers were formed on RABiTS tape. Acetate-based precursor solution was employed to synthesize the precursor solution. Subsequently, the precursor solution was stabilized and modified with triethanolamine. $CeO_2$ precursor gel film was coated and annealed in $Ar/H_2$ atmosphere at high temperature. An annealed $CeO_2$ film shows mixed orientation with high (001) texturing. It was shown that (111) texture of $CeO_2$ layers were enhanced by multiple coating. This degradation was attributed to development of microcracks in the multiply coated $CeO_2$ films. Also discussed are the synthesis and the characterization of $La_2Zr_2O_7$ (LZO) buffer layers on RABiTS tape. A biaxially textured LZO buffer layer was fabricated with MOD processing method using metal alkoxide based precursor solution. It was shown that the LZO film were epitaxially grown on RABiTS tape and crack-free & uniform surface was obtained after annealing in $Ar/H_2$ atmosphere.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

Optimization of Reverse Engineering Processes for Cu Interconnected Devices

  • Koh, Jin Won;Yang, Jun Mo;Lee, Hyung Gyoo;Park, Keun Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.304-307
    • /
    • 2013
  • Reverse engineering of semiconductor devices utilizes delayering processes, in order to identify how the interconnection lines are stacked over transistor gates. Cu metal has been used in recent fabrication technologies, and de-processes becomes more difficult with the shrinking device dimensions. In this article, reverse engineering technologies to reveal the Cu interconnection lines and Cu via-plugs embedded in dielectric layers are investigated. Stacked dielectric layers are removed by $CF_4$ plasma etching, then the exposed planar Cu metal lines and via-plugs are selectively delineated by wet chemical solution, instead of the commonly used plasma-based dry etch. As a result, we have been successful in extracting the layouts of multiple layers within a system IC, and this technique can be applicable to other logic IC, analog IC, and CMOS IC, etc.

Multilevel Magnetization Switching in a Dual Spin Valve Structure

  • Chun, B.S.;Jeong, J.S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.328-331
    • /
    • 2011
  • Here, we describe a dual spin valve structure with distinct switching fields for two pinned layers. A device with this structure has a staircase of three distinct magnetoresistive states. The multiple resistance states are achieved by controlling the exchange coupling between two ferromagnetic pinned layers and two adjacent anti-ferromagnetic pinning layers. The maximum magnetoresistance ratio is 7.9% for the current-perpendicular-to-plane and 7.2% for the current-in-plane geometries, with intermediate magnetoresistance ratios of 3.9% and 3.3%, respectively. The requirements for using this exchange-biased stack as a three-state memory device are also discussed.

Ellipsometric Expressions for a Sample Coated with Uniaxially Anisotropic Layers (단축 이방성 박막들이 코팅된 시료의 타원식)

  • Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.5
    • /
    • pp.275-282
    • /
    • 2015
  • The effective reflection coefficients for light obliquely incident upon a substrate coated with uniaxially anisotropic films and with isotropic films are derived. Multiple reflections inside anisotropic films, as well as those inside isotropic films, are properly treated. These expressions, together with the related ellipsometric expressions, can be used to find the nonuniform distribution of an uniaxially anisotropic film perpendicular to the film's surface, by approximating it as consisting of uniaxially anisotropic uniform layers and applying the conventional modeling technique for spectroscopic ellipsometry.

Effect of Multiple Contact Spots Simulated by Array of Balls on Contact Resistance (볼군의 다수 접촉점이 접촉저항에 미치는 영향)

  • ;Myshkin,N.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2967-2972
    • /
    • 1994
  • The multiple character of the contact interaction and the collective behavior of elementary microcontacts play a significant role in all the processes occurring in the surface layers, including the failure due to friction and wear. The array of metal spheres compressed between flat plates has been used for simulation of the contact behavior of multiple contact of solids under normal loading. An experimental design has been made providing regular array of the spheres at the same size with different spatial order. Measurement of electrial contact resistance has been made using the equipment providing the adequate accuracy in the range of micro Ohms. The data on electrical contact resistance have been compared with theoretical predictions using the multiple contact model of constriction resistance. The effect of single spots number and array on conductivity of contact has been evaluated.

A Study on Handwritten Digit Recognition by Layer Combination of Multiple Neural Network (다중 신경망의 계층 결합에 의한 필기체 숫자 인식에 관한 연구)

  • 김두식;임길택;남윤석
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.468-471
    • /
    • 1999
  • In this paper, we present a solution for combining multiple neural networks. Each neural network is trained with different features. And the neural networks are combined by four methods. The recognition rates by four combination methods are compared. The experimental results for handwritten digit recognition shows that the combination at hidden layers by single layer neural network is superior to any other methods. The reasons of the results are explained.

  • PDF

A Queueing Model for Mobile Communication Systems with Hierarchical Cell Structure (계층적 셀 구조를 갖는 이동 통신 시스템의 큐잉 모델)

  • 김기완
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.63-78
    • /
    • 1998
  • The hierarchical cell structure consists of the macrocell and microcells to increase the system capacity and to achieve broad coverage. The hierarchical cell structure provides services for users in different mobility. In this paper, an analytical queueing model in mobile networks is proposed for the performance evaluation of the hierarchical cell structure. The model for networks with the multiple levels can simplify multi-dimensional ones into one-dimensional queueing model. The computational advantage will be growing as the layers are constructed in multiple levels. The computer simulation is provided for validating the proposed analytical model.

  • PDF

Surface Reaction between Phosphate bonded $SiO_2$ Investment and Ti-Zr-(Cu) based Alloys for Dental castings (인산염계 $SiO_2$ 주형재와 치과주조용 Ti-Zr-(Cu)계 합금의 계면반응)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.57-63
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. To investigate the surface reaction layers produced by the reaction with mold materials and the influence of the reaction layers on the hardness of castings, A phosphate bonded $SiO_2$ base investment was used as mold material, and microstructure observation and hardness test were performed. The surface reaction layers of Ti-13%Zr and Ti-13%Zr-5%Cu alloys were thinner than that of CP Ti had a clearly multiple structure. A difference of the hardness between surface and inner of the Ti-13%Zr and Ti-13%Zr-5%Cu alloys became less than that of CP Ti. From the results, it was found that the Ti-Zr-(Cu) based alloys were possible to cast with $SiO_2$ base investment without the great changes of mechanical properties of the castings.

  • PDF