• Title/Summary/Keyword: Multiphysics modeling

Search Result 33, Processing Time 0.028 seconds

Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers

  • Navarro, Vicente;Asensio, Laura;Gharbieh, Heidar;la Morena, Gema De;Pulkkanen, Veli-Matti
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1047-1059
    • /
    • 2019
  • This work describes the development of a numerical module with a multiphysics structure to simulate the thermo-hydro-chemo-mechanical behavior of compacted bentonites. First, the conceptual model, based on the state-of-the-art formulation for clay-based engineered barriers in deep geological repositories, is described. Second, the advantages of multiphysics-based modules are highlighted. Then, the guidelines to develop a code using such tools are outlined, presenting an example of implementation. Finally, the simulation of three tests that illustrate the behavior of compacted bentonites assesses the scope of the developed code. The satisfactory results obtained, and the relative simplicity of implementation, show the opportunity of the modeling strategy proposed.

A benchmark for two-dimensional numerical subduction modeling using COMSOL Multiphysics® (콤솔 멀티피직스를 활용한 2차원 수치 섭입모델링 벤치마크)

  • Yu, Suhwan;Lee, Changyeol
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.683-694
    • /
    • 2018
  • Subduction has been the focal point of numerical studies for decades because it plays an important role in the Earth's mass and energy circulations and generates earthquakes and arc volcanoes which are closely related to the human lives. Among the studies on subduction, numerical modeling has been broadly applied to the quantitative studies on the subducting slab in the mantle which cannot be directly observed. In this study, we benchmark the numerical subduction modeling using a finite element package, COMSOL $Multiphysics^{(R)}$ and the results are consistent with the previously reported benchmark results.

Structural Analysis Simulation of Cantilever Shaped Piezoelectric Energy Harvester Using COMSOL Multiphysics (COMSOL Multiphysics를 활용한 캔틸레버 형태의 압전 에너지 하베스터 구조 해석 시뮬레이션)

  • Kwak, Min Sub;Hwang, Geon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.416-425
    • /
    • 2021
  • In the 4th industrial age, electronic devices are becoming smaller and lighter with a low power consumption to overcome spatial limitation. The piezoelectric energy harvesters can convert mechanical kinetic energy into electric energy; thus, enabling the operation of small electronic devices. Recently, various piezoelectric harvesters have been reported and the electric output from these harvesters could be anticipated by theoretical analysis methods. For example, COMSOL Multiphysics software provides a theoretical simulation of piezoelectric effect with a combination of mechanical and electrical phenomena in the piezoelectric materials. This article introduces a brief modeling of piezoelectric harvester to investigate mechanical stress and electrical output of harvesting devices by the COMSOL Multiphysics software.

Multi-level Modeling and Simulation of Electrical Vehicles (전기자동차의 다중레벨 모델링과 시뮬레이션)

  • Oh, Yong-Taek;van Duijsen, P.J.
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • There are many ways in which electric vehicles are mathematically modeled and simulated. The components have different physical background and models, but have to fit into one mathematical model. A multiphysics model structure is required. Depending on the goal of the simulation, there are various levels on which the simulation can be performed. This is called multilevel, consisting of a conceptual system level, a circuit level and a more detailed component level. This paper discusses which multiphysics models and multilevel simulations are required for the various components in an electric vehicle. Also, this simulation approach could improve the effectiveness of learning in engineering education.

  • PDF

Case studies for modeling magnetic anomalies with COMSOL Multiphysics® (콤솔 멀티피직스를 활용한 지자기장 모델링 사례 연구)

  • Ha, Goeun;Kim, Seung-Sep
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.677-682
    • /
    • 2018
  • Magnetic anomalies are sensitive to magnetic properties present in deep Earth and near surface structures. Such geophysical characteristics often can be quantified by numerical analyses. In this study, we developed a finite element method (FEM) approach to compute magnetic anomalies using COMOL $Multiphysics^{(R)}$. This FEM approach was verified by comparing its numerical results with the previously known analytic solution for a uniformly magnetized sphere. Then, we used the method to compute magnetic reversal patterns near mid-ocean ridge with various faulting scenarios. This COMSOL-based approach can be incorporated into advanced multi-physical numerical models to understand the Earth.

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

Thermal Analyses of Deep Geological Disposal Cell With Heterogeneous Modeling of PLUS7 Spent Nuclear Fuel

  • Hyungju Yun;Min-Seok Kim;Manho Han;Seo-Yeon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.517-529
    • /
    • 2023
  • The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.

A study on the bipolar plate of electrolytic cell of hydrogen gas generation system by numerical system (수소가스발생 장치의 전해조의 분리판에 관한 전사모사 연구)

  • Jo, Hyeon-Hak;Lee, Sang-Ho;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This study is focused on the modeling of two phase fluid flow system in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

Multi-physics analysis for the design and development of micro-thermoelectric coolers

  • Han, Seung-Woo;Hasan, MD Anwarul;Kim, Jung-Yup;Lee, Hyun-Woo;Lee, Kong-Hoon;Kim, Oo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.139-144
    • /
    • 2005
  • A rigorous research is underway in our team, for the design and development of high figure of merits (ZT= 1.5${\sim}$2.0) micro-thermoelectric coolers. This paper discusses the fabrication process that we are using for developing the $Sb_2Te_3-Bi_2Te_3$ micro-thermoelectric cooling modules. It describes how to obtain the mechanical properties of the thin film TEC elements and reports the results of an equation-based multiphysics modeling of the micro-TEC modules. In this study the thermoelectric thin films were deposited on Si substrates using co-sputtering method. The physical mechanical properties of the prepared films were measured by nanoindentation testing method while the thermal and electrical properties required for modeling were obtained from existing literature. A finite element model was developed using an equation-based multiphysics modeling by the commercial finite element code FEMLAB. The model was solved for different operating conditions. The temperature and the stress distributions in the P and N elements of the TEC as well as in the metal connector were obtained. The temperature distributions of the system obtained from simulation results showed good agreement with the analytical results existing in literature. In addition, it was found that the maximum stress in the system occurs at the bonding part of the TEC i.e. between the metal connectors and TE elements of the module.

  • PDF

Supplementation of Tire Strain Sensor Performance by FEM Simulation Program (FEM 시뮬레이션 프로그램을 이용한 타이어 변형률 센서 성능 보완)

  • Kim, JongInn;Choi, BumKyoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1237-1238
    • /
    • 2015
  • 이 논문은 타이어 변형량을 측정하는 변형량 센서의 시제품을 modeling하여 COMSOL Multiphysics FEM 해석 프로그램을 통해 시뮬레이션을 수행한 것을 다룬 것이다. 센서의 구조 중에 센서의 성능에 큰 영향력을 미치는 구조를 변수로 잡아 각 변수에 따른 센서의 capacitance의 linearity와 sensitivity을 시뮬레이션을 통해 도출했다. 도출한 값을 토대로 센서 구조에 대한 최적의 범위를 구하고 센서의 시제품의 구조 변수의 값이 이 범위 내에 있는 것을 보여 시제품의 성능에 대한 검증했다.

  • PDF