DOI QR코드

DOI QR Code

Case studies for modeling magnetic anomalies with COMSOL Multiphysics®

콤솔 멀티피직스를 활용한 지자기장 모델링 사례 연구

  • Ha, Goeun (Department of Geology, University of Maryland) ;
  • Kim, Seung-Sep (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • Received : 2018.12.17
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

Magnetic anomalies are sensitive to magnetic properties present in deep Earth and near surface structures. Such geophysical characteristics often can be quantified by numerical analyses. In this study, we developed a finite element method (FEM) approach to compute magnetic anomalies using COMOL $Multiphysics^{(R)}$. This FEM approach was verified by comparing its numerical results with the previously known analytic solution for a uniformly magnetized sphere. Then, we used the method to compute magnetic reversal patterns near mid-ocean ridge with various faulting scenarios. This COMSOL-based approach can be incorporated into advanced multi-physical numerical models to understand the Earth.

지구 자기장은 지구 내부 및 지표면 근처에서 일어나는 다양한 자화 특성 변화에 민감하게 반응하며, 이러한 지구물리적 특성은 현장에서 측정된 자기 이상치의 정량적 분석을 통하여 특정화된다. 이 연구에서는 자기 이상치 분석에 활용될 수 있는 유한요소법 기반 수치모델링을 콤솔 멀티피직스를 사용하여 구현하였다. 구현된 수치모델링 방법은 기존에 알려진 해석해와 비교하여 그 유효성을 검증하였으며, 중앙해령에서 지자기 역전과 단층 구조 사이의 상관관계를 모사하는 데 적용하였다. 이러한 유한요소 기반의 지자기 모델링 기법은 다중 물리적 현상 모사에 손쉽게 적용될 수 있다.

Keywords

Acknowledgement

Supported by : 충남대학교

References

  1. Blakely, R., 1995, Potential Thoery in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, UK.
  2. Butler, S.L. and Sinha, G., 2012, Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models. Comput. Geosci., 42, 168-176, doi:10.1016/j.cageo.2011.08.022.
  3. Canales, J.P., Tucholke, B.E. and Collins, J.A., 2004, Seismic reflection imaging of an oceanic detachment fault: Atlantis megamullion (Mid-Atlantic Ridge, $30^{\circ}$10′N), Earth Planet. Sci. Lett., 222(2), 543-560, doi:10.1016/j.epsl.2004.02.023.
  4. Fujii, M., Okino, K., Honsho, C., Dyment, J., Szitkar, F., Mochizuki, N. and Asada, M., 2015, High-resolution magnetic signature of active hydrothermal systems in the back-arc spreading region of the southern Mariana Trough. J. Geophys. Res. Solid Earth, 120(5), 2821-2837, doi:10.1002/2014JB011714.
  5. Macdonald, K.C., Scheirer, D.S. and Carbotte, S.M., 1991, Mid-Ocean Ridges: Discontinuities, Segments and Giant Cracks. Science, 253(5023), 986-994, doi:10.1126/science.253.5023.986.
  6. Reston, T.J. and Ranero, C.R., 2011, The 3-D geometry of detachment faulting at mid-ocean ridges. Geochemistry, Geophys., Geosystems, 12(7), Q0AG05, doi:10.1029/2011GC003666.
  7. Szitkar, F. and Dyment, J., 2015, Near-seafloor magnetics reveal tectonic rotation and deep structure at the TAG (Trans-Atlantic Geotraverse) hydrothermal site (Mid-Atlantic Ridge, $26^{\circ}$N). Geology, 43(1), 87-90, doi:10.1130/G36086.1.
  8. Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A., 1976, Applied Geophysics. Cambridge University Press, Cambridge, UK.
  9. Thebault, E. et al., 2015, International Geomagnetic Reference Field: the 12th generation. Earth, Planets Sp., 67(1), 79, doi:10.1186/s40623-015-0228-9.
  10. Tucholke, B.E., Lin, J. and Kleinrock, M.C., 1998, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth, 103(B5), 9857-9866, doi:10.1029/98JB00167.
  11. Turcotte, D.L. and Schubert, G., 2014, Geodynamics. 3rd ed., Cambridge University Press, Cambridge, UK.
  12. Vine, F.J. and Matthews, D.H., 1963, Magnetic Anomalies Over Oceanic Ridges. Nature, 199(4897), 947-949, doi:10.1038/199947a0.

Cited by

  1. Numerical or analog modeling study vol.54, pp.6, 2018, https://doi.org/10.14770/jgsk.2018.54.6.585
  2. Optimization of Pig Positioning Method Based on Uniaxial Magnetoresistive Sensor vol.49, pp.5, 2018, https://doi.org/10.1520/jte20190792