Browse > Article
http://dx.doi.org/10.1016/j.net.2019.02.007

Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers  

Navarro, Vicente (Geoenvironmental Group, University of Castilla-La Mancha)
Asensio, Laura (Geoenvironmental Group, University of Castilla-La Mancha)
Gharbieh, Heidar (VTT Technical Research Centre of Finland Ltd)
la Morena, Gema De (Geoenvironmental Group, University of Castilla-La Mancha)
Pulkkanen, Veli-Matti (VTT Technical Research Centre of Finland Ltd)
Publication Information
Nuclear Engineering and Technology / v.51, no.4, 2019 , pp. 1047-1059 More about this Journal
Abstract
This work describes the development of a numerical module with a multiphysics structure to simulate the thermo-hydro-chemo-mechanical behavior of compacted bentonites. First, the conceptual model, based on the state-of-the-art formulation for clay-based engineered barriers in deep geological repositories, is described. Second, the advantages of multiphysics-based modules are highlighted. Then, the guidelines to develop a code using such tools are outlined, presenting an example of implementation. Finally, the simulation of three tests that illustrate the behavior of compacted bentonites assesses the scope of the developed code. The satisfactory results obtained, and the relative simplicity of implementation, show the opportunity of the modeling strategy proposed.
Keywords
Deep geological repository; Clay-based barrier; Compacted bentonite; Multiphysics modeling; Thermo-hydro-chemo-mechanical behavior;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ASTM D2216-10, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, PA, 2010.
2 ASTM D7263-09(2018)e1, Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens, ASTM International, West Conshohocken, PA, 2018.
3 R.M. Garrels, C.H. Christ, Solutions, Minerals, and Equilibria, Harper and Row, New York, 1965.
4 G. Kahr, F. Kraehenbuehl, H.F. Stoeckli, M. Muller-Vonmoos, Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques. II. Heats of immersion, swelling pressures and thermodynamic properties, Clay Miner. 25 (4) (1990) 499-506.   DOI
5 P. Sane, T. Laurila, M. Olin, K. Koskinen, Current Status of Mechanical Erosion Studies of Bentonite Buffer, Posiva Report 2012-45, Posiva Oy, 2013, www.posiva.fi/files/3349/POSIVA_2012-45.pdf. accessed: January 2019.
6 L. Wadso, K. Svennberg, A. Dueck, An experimentally simple method for measuring sorption isotherms, Dry. Technol. 22 (10) (2004) 2427-2440.   DOI
7 E.E. Alonso, J. Vaunat, A. Gens, Modelling the mechanical behaviour of expansive clays, Eng. Geol. 54 (1-2) (1999) 173-183.   DOI
8 F. Salles, J.M. Douillard, R. Denoyel, O. Bildstein, M. Jullien, I. Beurroies, H. Van Damme, Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy, J. Colloid Interface Sci. 333 (2) (2009) 510-522.   DOI
9 M.K. Gobbert, A. Churchill, G. Wang, T.I. Seidman, COMSOL Multiphysics for efficient solution of a transient reaction-diffusion system with fast reaction, in: Y. Rao (Ed.), Proceedings of the COMSOL Conference, Boston, 2009.
10 B.R. Scanlon, J.P. Nicot, J.W. Massmann, Soil gas movement in unsaturated systems, in: A.W. Warrick (Ed.), Soil Physics Companion, Taylor and Francis Group, Boca Raton, Florida, 2002, pp. 297-341.
11 Y. Yoshimi, J.O. Ostenberg, Compression of partially saturated cohesive soils, J. Soil Mech. Found Div. 89 (4) (1963) 1-24.   DOI
12 M.V. Villar, A. Lloret, Variation of the intrinsic permeability of expansive clay upon saturation, in: K. Adachi, M. Fukue (Eds.), Clay Science for Engineering, Balkema, Rotterdam, 2001, pp. 259-266.
13 F. Helfferich, Ion Exchange. Series in Advanced Chemistry, McGraw-Hill, New York, 1962.
14 A. Lloret, M.V. Villar, Advances on the knowledge of the thermo-hydromechanical behaviour of heavily compacted "FEBEX" bentonite, Phys. Chem. Earth 32 (8-14) (2007) 701-715.   DOI
15 C. Tournassat, C.A.J. Appelo, Modelling approaches for anion-exclusion in compacted Na-bentonite, Geochem. Cosmochim. Acta 75 (13) (2011) 3698-3710.   DOI
16 P.G. Studds, D.I. Stewart, T.W. Cousens, The effects of salt solutions on the properties of bentonite-sand mixtures, Clay Miner. 33 (4) (1998) 651-660.   DOI
17 A. Yustres, A. Jenni, L. Asensio, X. Pintado, K. Koskinen, V. Navarro, P. Wersin, Comparison of the hydrogeochemical and mechanical behaviours of compacted bentonite using different conceptual approaches, Appl. Clay Sci. 141 (2017) 280-291.   DOI
18 V. Navarro, G. De la Morena, A. Yustres, J. Gonzalez-Arteaga, L. Asensio, Predicting the swelling pressure of MX-80 bentonite, Appl. Clay Sci. 149 (2017) 51-58.   DOI
19 Posiva, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Features, Events and Processes 2012, Posiva 2012-07, Posiva Oy, 2012, www.posiva.fi/files/2994/Posiva_2012-07.pdf. accessed: January 2019.
20 S. Olivella, E.E. Alonso, Gas flow through clay barriers, Geotechnique 58 (3) (2008) 157-176.   DOI
21 D.G. Fredlund, H. Rahardjo, M.D. Fredlund, Unsaturated Soil Mechanics in Engineering Practice, John Wiley and Sons, Hoboken, New Jersey, 2012.
22 M. Sanchez, A. Gens, M.V. Villar, S. Olivella, Fully coupled thermo-hydromechanical double-porosity formulation for unsaturated soils, Int. J. Geomech. 16 (6) (2016).
23 K. Ikonen, J. Kuutti, H. Raiko, Thermal Dimensioning for the Olkiluoto Repository - 2018 Update, Posiva Working Report 2018-26, Posiva Oy, 2018, www.posiva.fi/files/4973/WR_2018-26_web.pdf. accessed: January, 2019.
24 V. Navarro, E.E. Alonso, Modeling swelling soils for disposal barriers, Comput. Geotech. 27 (1) (2000) 19-43.   DOI
25 M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (5) (1980) 892-898.   DOI
26 R.M. Brooks, A.T. Corey, Hydraulic Properties of Porous Media, Colorado State University, Fort Collins, Colorado, 1964.
27 A. Gens, B. Vallejan, M. Sanchez, C. Imbert, M.V. Villar, M. van Geet, Hydro-mechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling, Geotechnique 61 (5) (2011) 367-386.   DOI
28 L.D.N. Guimaraes, A. Gens, M. Sanchez, S. Olivella, A chemo-mechanical constitutive model accounting for cation exchange in expansive clays, Geotechnique 63 (3) (2013) 221-234.   DOI
29 V. Navarro, A. Yustres, L. Asensio, G. De la Morena, J. Gonzalez-Arteaga, T. Laurila, X. Pintado, Modelling of compacted bentonite swelling accounting for salinity effects, Eng. Geol. 223 (2017) 48-58.   DOI
30 COMSOL, COMSOL Multiphysics Reference Manual, 2015 version 5.12015.
31 J.R.R.A. Martins, J.T. Hwang, Review and unification of methods for computing derivatives of multidisciplinary computational model, AIAA J. 51 (11) (2013) 2582-2599.   DOI
32 D.W. Pollock, Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium, Water Resour. Res. 22 (5) (1986) 765-775.   DOI
33 E. Romero, A. Gens, A. Lloret, Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Eng. Geol. 54 (1-2) (1999) 117-127.   DOI
34 V. Navarro, E.E. Alonso, Secondary compression of clays as a local dehydration process, Geotechnique 51 (10) (2001) 859-869.   DOI
35 A. Gens, E.E. Alonso, A framework for the behaviour of unsaturated expansive clays, Can. Geotech. J. 29 (6) (1992) 1013-1032.   DOI
36 R.N. Yong, Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance, Eng. Geol. 54 (1-2) (1999) 83-91.   DOI
37 T.A. Hueckel, Water-mineral interaction in hygromechanics of clays exposed to environmental loads: a mixture-theory approach, Can. Geotech. J. 29 (6) (1992) 1071-1086.   DOI
38 V. Navarro, L. Asensio, G. De la Morena, X. Pintado, A. Yustres, Differentiated intra-and inter-aggregate water content models of mx-80 bentonite, Appl. Clay Sci. 118 (2015) 325-336.   DOI
39 European Commission, Geological Disposal of Radioactive Wastes Produced by Nuclear Power: from Concept to Implementation, European Commission, Luxembourg, 2004.
40 A.C. Jacinto, M.V. Villar, A. Ledesma, Influence of water density on the water-retention curve of expansive clays, Geotechnique 62 (8) (2012) 657-667.   DOI
41 OECD-NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories, State-Of-The-Art Report, OECD-NEA, Paris, 2003.
42 R. Pusch, The performance of clay barriers in repositories for high-level radioactive waste, Nucl. Eng. Technol. 38 (6) (2006) 483-488.
43 P. Sellin, O.X. Leupin, The use of clay as an engineered barrier in radioactive-waste management - a review, Clay Clay Miner. 61 (6) (2013) 477-498.   DOI
44 Posiva, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Synthesis 2012, Posiva 2012-12, Posiva Oy, 2012, www.posiva.fi/files/2987/Posiva_2012-12web.pdf. accessed: January 2019.
45 V. Navarro, G. De la Morena, A. Yustres, R. Lopez-Vizcaino, L. Asensio, A Numerical Inspection on the Squeezing Test in Active Clays, Geotechnique, 2018, https://doi.org/10.1680/jgeot.17.P.187. Ahead of Print.   DOI
46 O. Karnland, A. Muurinen, F. Karlsson, Bentonite swelling pressure in NaCl solutions - experimentally determined data and model calculations, in: E.E. Alonso, A. Ledesma (Eds.), Advances in Understanding Engineered Clay Barriers: Proceedings of the International Symposium on Large Scale Field Tests in Granite, Sitges, Barcelona, 12-14 November 2003, Taylor and Francis Group, London, 2005, pp. 241-256.
47 V. Navarro, L. Asensio, J. Alonso, A. Yustres, X. Pintado, Multiphysics implementation of advanced soil mechanics models, Comput. Geotech. 60 (2014) 20-28.   DOI
48 J. Alonso, V. Navarro, B. Calvo, L. Asensio, Hydro-mechanical analysis of CO2 storage in porous rocks using a critical state model, Int. J. Rock Mech. Min. Sci. 54 (2012) 19-26.   DOI
49 M. Cervera, M. Chiumenti, R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation, Comput, Meth. Appl. Mech. Eng. 199 (37-40) (2010) 2559-2570.   DOI
50 V. Navarro, L. Asensio, A. Yustres, G. De la Morena, X. Pintado, Swelling and mechanical erosion of MX-80 bentonite: pinhole test simulation, Eng. Geol. 202 (2016) 99-113.   DOI
51 D. Sheng, S.W. Sloan, A. Gens, A constitutive model for unsaturated soils: thermomechanical and computational aspects, Comput. Mech. 33 (6) (2004) 453-465.   DOI
52 H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, second ed., Claredon Press, Oxford, 1959.
53 M.V. Villar, J. Cuevas, P.L. Martin, R. Campos, A.M. Fernandez, Thermo-HydroMechanical Characterization of the Spanish Reference Clay Material for Engineered Barrier for Granite and Clay HLW Repository: Laboratory and Small Mock-Up Testing, Publicacion Tecnica 03/95, ENRESA, 1995. January 2019, www.iaea.org/inis/collection/NCLCollectionStore/_Public/26/067/26067405.pdf.
54 L. Kiviranta, S. Kumpulainen, Quality Control and Characterization of Bentonite Materials, Posiva Working Report 2011-84, Posiva Oy, 2011. January 2019, www.posiva.fi/files/1994/WR_2011-84_web.pdf.
55 D.L. Parkhurst, C.A.J. Appelo, Description of input and examples for PHREEQC version 3 - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Tech. Meth. (2013) 497, book 6, chap. A43.
56 E.E. Alonso, A. Gens, A. Josa, A constitutive model for partially saturated soils, Geotechnique 40 (3) (1990) 405-530.   DOI
57 D. Sheng, Review of fundamental principles in modelling unsaturated soil behaviour, Comput. Geotech. 38 (6) (2011) 757-776.   DOI
58 C. Ma, T. Hueckel, Stress and pore pressure in saturated clay subjected to heat from radioactive waste: a numerical simulation, Can. Geotech. J. 29 (6) (1992) 1087-1094.   DOI
59 V. Navarro, G. De la Morena, J. Gonzalez-Arteaga, A. Yustres, L. Asensio, A microstructural effective stress definition for compacted active clays, Geomech. Energy Env. 15 (2018) 47-53.   DOI
60 A. Dueck, U. Nilsson, Thermo-Hydro-Mechanical Properties of MX-80. Results from Advanced Laboratory Tests. SKB Technical Report TR-10-55, Svensk Karnbranslehantering AB, Swedish Nuclear Fuel and Waste Management Co, 2010. January 2019, www.skb.com/publication/2223073/TR-10-55.pdf.
61 X. Pintado, A. Ledesma, A. Lloret, Backanalysis of thermohydraulic bentonite properties from laboratory tests, Eng. Geol. 64 (2002) 91-115.   DOI
62 S.M. Hassanizadeh, Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws, Adv. Water Resour. 9 (4) (1986) 207-222.   DOI
63 J.R. Philip, D.A. De Vries, Moisture movement in porous materials under temperature gradients, Eos Trans. Am. Geophys. Union 38 (2) (1957) 222-232.   DOI
64 S. Olivella, A. Gens, Vapour transport in low permeability unsaturated soils with capillary effects, Transport Porous Media 40 (2) (2000) 219-241.   DOI
65 N.E. Edlefsen, A.B.C. Anderson, Thermodynamics of soil moisture, Hilgardia 15 (2) (1943) 31-298.   DOI
66 J. Ewen, H.R. Thomas, Heating unsaturated medium sand, Geotechnique 39 (3) (1989) 455-470.   DOI
67 D.G. Fredlund, H. Rahardjo, Soil Mechanics for Unsaturated Soils, John Wiley and Sons, New York, 1993.
68 J. Simunek, M.T. van Genuchten, Contaminant transport in the unsaturated zone. Theory and modelling, in: J.W. Delleur (Ed.), The Handbook of Groundwater Engineering, second ed., CRC Press, 2006, 22.1-2.46.
69 I.C. Bourg, G. Sposito, A.C.M. Bourg, Tracer diffusion in compacted, water-saturated bentonite, Clay Clay Miner. 54 (3) (2006) 363-374.   DOI
70 E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, second ed., Cambridge University Press, 1997.