Browse > Article
http://dx.doi.org/10.14770/jgsk.2018.54.6.683

A benchmark for two-dimensional numerical subduction modeling using COMSOL Multiphysics®  

Yu, Suhwan (Faculty of Earth Systems and Environmental Sciences, Chonnam National University)
Lee, Changyeol (Faculty of Earth Systems and Environmental Sciences, Chonnam National University)
Publication Information
Journal of the Geological Society of Korea / v.54, no.6, 2018 , pp. 683-694 More about this Journal
Abstract
Subduction has been the focal point of numerical studies for decades because it plays an important role in the Earth's mass and energy circulations and generates earthquakes and arc volcanoes which are closely related to the human lives. Among the studies on subduction, numerical modeling has been broadly applied to the quantitative studies on the subducting slab in the mantle which cannot be directly observed. In this study, we benchmark the numerical subduction modeling using a finite element package, COMSOL $Multiphysics^{(R)}$ and the results are consistent with the previously reported benchmark results.
Keywords
subduction; benchmark; numerical modeling; COMSOL $Multiphysics^{(R)}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P., Schmeling, H. and Schnaubelt, T., 1989, A benchmark comparison for mantle convection codes. Geophysical Journal International, 98, 23-38.   DOI
2 Cuvelier, C., Segal, A. and Van Steenhoven, A.A., 1986, Finite Element Methods and the Navier-Stokes Equations. Vol. 22, D. Reidel, Norwell, Mass.
3 Gaetani, G.A. and Grove, T.L., 1998, The influence of water on melting of mantle peridotite. Contribution to Mineralogy and Petrology, 131, 323-346.   DOI
4 Hirth, G. and Kohlstedt, D., 1995, Experimental constraints on the dynamics of the partially molten upper mantle 2. Deformation in the dislocation creep regime. Journal of Geophysical Research, 100, 15441-15449.   DOI
5 Karato, S.-I. and Wu, P., 1993, Rheology of the upper mantle:a synthesis. Science, 260, 771-778.   DOI
6 King, S.D., Lee, C., van Keken, P.E., Leng, W., Zhong, S., Tan, E., Tosi, N. and Kameyama, M.C., 2010, A community benchmark for 2-D Cartesian compressible convection in the Earth's mantle. Geophysical Journal International, 180, 73-87.   DOI
7 McKenzie, D.P. and Sclater, J.C., 1968, Heat-flow inside the island arcs of the northwest Pacific. Journal of Geophysical Research, 73, 3173-3179.   DOI
8 Oxburgh, E.R. and Turcotte, D.L., 1968, Problem of high heat flow and volcanism associated with zones of descending mantle convective flow. Nature, 218, 1041-1043.   DOI
9 Turcotte, D. and Schubert, G., 2002, Geodynamics. Cambridge Univ. Press, Cambridge, 2nd Ed.
10 Travis, B.J., Anderson, C., Baumgardner, J., Gable, C.W., Hager, B.H., O'Connell, R.J., Olson, P., Raefsky, A. and Schubert, G., 1990, A benchmark comparison of numerical-methods for infinite Prandtl number thermal-convection in two-dimensional Cartesian geometry. Geophysical and Astrophysical Fluid Dynamics, 55, 137-160.   DOI
11 van Keken, P.E., Currie, C., King, S.D., Behn, M.D., Cagnioncle, A., He, J., Katz, R.F., Lin, S.-C., Parmentier, E.M., Spiegelman, M. and Wang, K., 2008, A community benchmark for subduction zone modeling. Physics of The Earth and Planetary Interiors, 171, 187-197.   DOI