DOI QR코드

DOI QR Code

Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers

  • Received : 2018.11.14
  • Accepted : 2019.02.07
  • Published : 2019.05.25

Abstract

This work describes the development of a numerical module with a multiphysics structure to simulate the thermo-hydro-chemo-mechanical behavior of compacted bentonites. First, the conceptual model, based on the state-of-the-art formulation for clay-based engineered barriers in deep geological repositories, is described. Second, the advantages of multiphysics-based modules are highlighted. Then, the guidelines to develop a code using such tools are outlined, presenting an example of implementation. Finally, the simulation of three tests that illustrate the behavior of compacted bentonites assesses the scope of the developed code. The satisfactory results obtained, and the relative simplicity of implementation, show the opportunity of the modeling strategy proposed.

Keywords

References

  1. European Commission, Geological Disposal of Radioactive Wastes Produced by Nuclear Power: from Concept to Implementation, European Commission, Luxembourg, 2004.
  2. OECD-NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories, State-Of-The-Art Report, OECD-NEA, Paris, 2003.
  3. R. Pusch, The performance of clay barriers in repositories for high-level radioactive waste, Nucl. Eng. Technol. 38 (6) (2006) 483-488.
  4. P. Sellin, O.X. Leupin, The use of clay as an engineered barrier in radioactive-waste management - a review, Clay Clay Miner. 61 (6) (2013) 477-498. https://doi.org/10.1346/CCMN.2013.0610601
  5. Posiva, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Synthesis 2012, Posiva 2012-12, Posiva Oy, 2012, www.posiva.fi/files/2987/Posiva_2012-12web.pdf. accessed: January 2019.
  6. O. Karnland, A. Muurinen, F. Karlsson, Bentonite swelling pressure in NaCl solutions - experimentally determined data and model calculations, in: E.E. Alonso, A. Ledesma (Eds.), Advances in Understanding Engineered Clay Barriers: Proceedings of the International Symposium on Large Scale Field Tests in Granite, Sitges, Barcelona, 12-14 November 2003, Taylor and Francis Group, London, 2005, pp. 241-256.
  7. A. Gens, B. Vallejan, M. Sanchez, C. Imbert, M.V. Villar, M. van Geet, Hydro-mechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling, Geotechnique 61 (5) (2011) 367-386. https://doi.org/10.1680/geot.SIP11.P.015
  8. M. Sanchez, A. Gens, M.V. Villar, S. Olivella, Fully coupled thermo-hydromechanical double-porosity formulation for unsaturated soils, Int. J. Geomech. 16 (6) (2016).
  9. L.D.N. Guimaraes, A. Gens, M. Sanchez, S. Olivella, A chemo-mechanical constitutive model accounting for cation exchange in expansive clays, Geotechnique 63 (3) (2013) 221-234. https://doi.org/10.1680/geot.SIP13.P.012
  10. V. Navarro, A. Yustres, L. Asensio, G. De la Morena, J. Gonzalez-Arteaga, T. Laurila, X. Pintado, Modelling of compacted bentonite swelling accounting for salinity effects, Eng. Geol. 223 (2017) 48-58. https://doi.org/10.1016/j.enggeo.2017.04.016
  11. COMSOL, COMSOL Multiphysics Reference Manual, 2015 version 5.12015.
  12. J.R.R.A. Martins, J.T. Hwang, Review and unification of methods for computing derivatives of multidisciplinary computational model, AIAA J. 51 (11) (2013) 2582-2599. https://doi.org/10.2514/1.J052184
  13. E. Romero, A. Gens, A. Lloret, Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Eng. Geol. 54 (1-2) (1999) 117-127. https://doi.org/10.1016/S0013-7952(99)00067-8
  14. A. Gens, E.E. Alonso, A framework for the behaviour of unsaturated expansive clays, Can. Geotech. J. 29 (6) (1992) 1013-1032. https://doi.org/10.1139/t92-120
  15. R.N. Yong, Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance, Eng. Geol. 54 (1-2) (1999) 83-91. https://doi.org/10.1016/S0013-7952(99)00064-2
  16. T.A. Hueckel, Water-mineral interaction in hygromechanics of clays exposed to environmental loads: a mixture-theory approach, Can. Geotech. J. 29 (6) (1992) 1071-1086. https://doi.org/10.1139/t92-124
  17. V. Navarro, E.E. Alonso, Secondary compression of clays as a local dehydration process, Geotechnique 51 (10) (2001) 859-869. https://doi.org/10.1680/geot.2001.51.10.859
  18. V. Navarro, L. Asensio, G. De la Morena, X. Pintado, A. Yustres, Differentiated intra-and inter-aggregate water content models of mx-80 bentonite, Appl. Clay Sci. 118 (2015) 325-336. https://doi.org/10.1016/j.clay.2015.10.015
  19. A.C. Jacinto, M.V. Villar, A. Ledesma, Influence of water density on the water-retention curve of expansive clays, Geotechnique 62 (8) (2012) 657-667. https://doi.org/10.1680/geot.7.00127
  20. C. Tournassat, C.A.J. Appelo, Modelling approaches for anion-exclusion in compacted Na-bentonite, Geochem. Cosmochim. Acta 75 (13) (2011) 3698-3710. https://doi.org/10.1016/j.gca.2011.04.001
  21. P.G. Studds, D.I. Stewart, T.W. Cousens, The effects of salt solutions on the properties of bentonite-sand mixtures, Clay Miner. 33 (4) (1998) 651-660. https://doi.org/10.1180/claymin.1998.033.4.12
  22. A. Yustres, A. Jenni, L. Asensio, X. Pintado, K. Koskinen, V. Navarro, P. Wersin, Comparison of the hydrogeochemical and mechanical behaviours of compacted bentonite using different conceptual approaches, Appl. Clay Sci. 141 (2017) 280-291. https://doi.org/10.1016/j.clay.2017.03.006
  23. V. Navarro, G. De la Morena, A. Yustres, J. Gonzalez-Arteaga, L. Asensio, Predicting the swelling pressure of MX-80 bentonite, Appl. Clay Sci. 149 (2017) 51-58. https://doi.org/10.1016/j.clay.2017.08.014
  24. F. Helfferich, Ion Exchange. Series in Advanced Chemistry, McGraw-Hill, New York, 1962.
  25. Posiva, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Features, Events and Processes 2012, Posiva 2012-07, Posiva Oy, 2012, www.posiva.fi/files/2994/Posiva_2012-07.pdf. accessed: January 2019.
  26. S. Olivella, E.E. Alonso, Gas flow through clay barriers, Geotechnique 58 (3) (2008) 157-176. https://doi.org/10.1680/geot.2008.58.3.157
  27. D.G. Fredlund, H. Rahardjo, M.D. Fredlund, Unsaturated Soil Mechanics in Engineering Practice, John Wiley and Sons, Hoboken, New Jersey, 2012.
  28. K. Ikonen, J. Kuutti, H. Raiko, Thermal Dimensioning for the Olkiluoto Repository - 2018 Update, Posiva Working Report 2018-26, Posiva Oy, 2018, www.posiva.fi/files/4973/WR_2018-26_web.pdf. accessed: January, 2019.
  29. V. Navarro, E.E. Alonso, Modeling swelling soils for disposal barriers, Comput. Geotech. 27 (1) (2000) 19-43. https://doi.org/10.1016/S0266-352X(00)00002-1
  30. D.W. Pollock, Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium, Water Resour. Res. 22 (5) (1986) 765-775. https://doi.org/10.1029/WR022i005p00765
  31. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (5) (1980) 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  32. R.M. Brooks, A.T. Corey, Hydraulic Properties of Porous Media, Colorado State University, Fort Collins, Colorado, 1964.
  33. B.R. Scanlon, J.P. Nicot, J.W. Massmann, Soil gas movement in unsaturated systems, in: A.W. Warrick (Ed.), Soil Physics Companion, Taylor and Francis Group, Boca Raton, Florida, 2002, pp. 297-341.
  34. Y. Yoshimi, J.O. Ostenberg, Compression of partially saturated cohesive soils, J. Soil Mech. Found Div. 89 (4) (1963) 1-24. https://doi.org/10.1061/JSFEAQ.0000523
  35. M.V. Villar, A. Lloret, Variation of the intrinsic permeability of expansive clay upon saturation, in: K. Adachi, M. Fukue (Eds.), Clay Science for Engineering, Balkema, Rotterdam, 2001, pp. 259-266.
  36. S.M. Hassanizadeh, Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws, Adv. Water Resour. 9 (4) (1986) 207-222. https://doi.org/10.1016/0309-1708(86)90025-4
  37. J.R. Philip, D.A. De Vries, Moisture movement in porous materials under temperature gradients, Eos Trans. Am. Geophys. Union 38 (2) (1957) 222-232. https://doi.org/10.1029/TR038i002p00222
  38. S. Olivella, A. Gens, Vapour transport in low permeability unsaturated soils with capillary effects, Transport Porous Media 40 (2) (2000) 219-241. https://doi.org/10.1023/A:1006749505937
  39. X. Pintado, A. Ledesma, A. Lloret, Backanalysis of thermohydraulic bentonite properties from laboratory tests, Eng. Geol. 64 (2002) 91-115. https://doi.org/10.1016/S0013-7952(01)00110-7
  40. N.E. Edlefsen, A.B.C. Anderson, Thermodynamics of soil moisture, Hilgardia 15 (2) (1943) 31-298. https://doi.org/10.3733/hilg.v15n02p031
  41. J. Ewen, H.R. Thomas, Heating unsaturated medium sand, Geotechnique 39 (3) (1989) 455-470. https://doi.org/10.1680/geot.1989.39.3.455
  42. D.G. Fredlund, H. Rahardjo, Soil Mechanics for Unsaturated Soils, John Wiley and Sons, New York, 1993.
  43. J. Simunek, M.T. van Genuchten, Contaminant transport in the unsaturated zone. Theory and modelling, in: J.W. Delleur (Ed.), The Handbook of Groundwater Engineering, second ed., CRC Press, 2006, 22.1-2.46.
  44. I.C. Bourg, G. Sposito, A.C.M. Bourg, Tracer diffusion in compacted, water-saturated bentonite, Clay Clay Miner. 54 (3) (2006) 363-374. https://doi.org/10.1346/CCMN.2006.0540307
  45. E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, second ed., Cambridge University Press, 1997.
  46. A. Lloret, M.V. Villar, Advances on the knowledge of the thermo-hydromechanical behaviour of heavily compacted "FEBEX" bentonite, Phys. Chem. Earth 32 (8-14) (2007) 701-715. https://doi.org/10.1016/j.pce.2006.03.002
  47. E.E. Alonso, A. Gens, A. Josa, A constitutive model for partially saturated soils, Geotechnique 40 (3) (1990) 405-530. https://doi.org/10.1680/geot.1990.40.3.405
  48. D. Sheng, S.W. Sloan, A. Gens, A constitutive model for unsaturated soils: thermomechanical and computational aspects, Comput. Mech. 33 (6) (2004) 453-465. https://doi.org/10.1007/s00466-003-0545-x
  49. D. Sheng, Review of fundamental principles in modelling unsaturated soil behaviour, Comput. Geotech. 38 (6) (2011) 757-776. https://doi.org/10.1016/j.compgeo.2011.05.002
  50. C. Ma, T. Hueckel, Stress and pore pressure in saturated clay subjected to heat from radioactive waste: a numerical simulation, Can. Geotech. J. 29 (6) (1992) 1087-1094. https://doi.org/10.1139/t92-125
  51. V. Navarro, G. De la Morena, J. Gonzalez-Arteaga, A. Yustres, L. Asensio, A microstructural effective stress definition for compacted active clays, Geomech. Energy Env. 15 (2018) 47-53. https://doi.org/10.1016/j.gete.2017.11.003
  52. A. Dueck, U. Nilsson, Thermo-Hydro-Mechanical Properties of MX-80. Results from Advanced Laboratory Tests. SKB Technical Report TR-10-55, Svensk Karnbranslehantering AB, Swedish Nuclear Fuel and Waste Management Co, 2010. January 2019, www.skb.com/publication/2223073/TR-10-55.pdf.
  53. G. Kahr, F. Kraehenbuehl, H.F. Stoeckli, M. Muller-Vonmoos, Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques. II. Heats of immersion, swelling pressures and thermodynamic properties, Clay Miner. 25 (4) (1990) 499-506. https://doi.org/10.1180/claymin.1990.025.4.08
  54. P. Sane, T. Laurila, M. Olin, K. Koskinen, Current Status of Mechanical Erosion Studies of Bentonite Buffer, Posiva Report 2012-45, Posiva Oy, 2013, www.posiva.fi/files/3349/POSIVA_2012-45.pdf. accessed: January 2019.
  55. L. Wadso, K. Svennberg, A. Dueck, An experimentally simple method for measuring sorption isotherms, Dry. Technol. 22 (10) (2004) 2427-2440. https://doi.org/10.1081/DRT-200032898
  56. E.E. Alonso, J. Vaunat, A. Gens, Modelling the mechanical behaviour of expansive clays, Eng. Geol. 54 (1-2) (1999) 173-183. https://doi.org/10.1016/S0013-7952(99)00079-4
  57. F. Salles, J.M. Douillard, R. Denoyel, O. Bildstein, M. Jullien, I. Beurroies, H. Van Damme, Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy, J. Colloid Interface Sci. 333 (2) (2009) 510-522. https://doi.org/10.1016/j.jcis.2009.02.018
  58. M.K. Gobbert, A. Churchill, G. Wang, T.I. Seidman, COMSOL Multiphysics for efficient solution of a transient reaction-diffusion system with fast reaction, in: Y. Rao (Ed.), Proceedings of the COMSOL Conference, Boston, 2009.
  59. V. Navarro, L. Asensio, J. Alonso, A. Yustres, X. Pintado, Multiphysics implementation of advanced soil mechanics models, Comput. Geotech. 60 (2014) 20-28. https://doi.org/10.1016/j.compgeo.2014.03.012
  60. J. Alonso, V. Navarro, B. Calvo, L. Asensio, Hydro-mechanical analysis of CO2 storage in porous rocks using a critical state model, Int. J. Rock Mech. Min. Sci. 54 (2012) 19-26. https://doi.org/10.1016/j.ijrmms.2012.05.016
  61. M. Cervera, M. Chiumenti, R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation, Comput, Meth. Appl. Mech. Eng. 199 (37-40) (2010) 2559-2570. https://doi.org/10.1016/j.cma.2010.04.006
  62. V. Navarro, L. Asensio, A. Yustres, G. De la Morena, X. Pintado, Swelling and mechanical erosion of MX-80 bentonite: pinhole test simulation, Eng. Geol. 202 (2016) 99-113. https://doi.org/10.1016/j.enggeo.2016.01.005
  63. V. Navarro, G. De la Morena, A. Yustres, R. Lopez-Vizcaino, L. Asensio, A Numerical Inspection on the Squeezing Test in Active Clays, Geotechnique, 2018, https://doi.org/10.1680/jgeot.17.P.187. Ahead of Print.
  64. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, second ed., Claredon Press, Oxford, 1959.
  65. M.V. Villar, J. Cuevas, P.L. Martin, R. Campos, A.M. Fernandez, Thermo-HydroMechanical Characterization of the Spanish Reference Clay Material for Engineered Barrier for Granite and Clay HLW Repository: Laboratory and Small Mock-Up Testing, Publicacion Tecnica 03/95, ENRESA, 1995. January 2019, www.iaea.org/inis/collection/NCLCollectionStore/_Public/26/067/26067405.pdf.
  66. L. Kiviranta, S. Kumpulainen, Quality Control and Characterization of Bentonite Materials, Posiva Working Report 2011-84, Posiva Oy, 2011. January 2019, www.posiva.fi/files/1994/WR_2011-84_web.pdf.
  67. ASTM D2216-10, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, PA, 2010.
  68. ASTM D7263-09(2018)e1, Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens, ASTM International, West Conshohocken, PA, 2018.
  69. R.M. Garrels, C.H. Christ, Solutions, Minerals, and Equilibria, Harper and Row, New York, 1965.
  70. D.L. Parkhurst, C.A.J. Appelo, Description of input and examples for PHREEQC version 3 - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Tech. Meth. (2013) 497, book 6, chap. A43.

Cited by

  1. Development of a THMC code for bentonites in COMSOL Multiphysics vol.195, 2019, https://doi.org/10.1051/e3sconf/202019504002