Browse > Article
http://dx.doi.org/10.14770/jgsk.2018.54.6.677

Case studies for modeling magnetic anomalies with COMSOL Multiphysics®  

Ha, Goeun (Department of Geology, University of Maryland)
Kim, Seung-Sep (Department of Geology and Earth Environmental Sciences, Chungnam National University)
Publication Information
Journal of the Geological Society of Korea / v.54, no.6, 2018 , pp. 677-682 More about this Journal
Abstract
Magnetic anomalies are sensitive to magnetic properties present in deep Earth and near surface structures. Such geophysical characteristics often can be quantified by numerical analyses. In this study, we developed a finite element method (FEM) approach to compute magnetic anomalies using COMOL $Multiphysics^{(R)}$. This FEM approach was verified by comparing its numerical results with the previously known analytic solution for a uniformly magnetized sphere. Then, we used the method to compute magnetic reversal patterns near mid-ocean ridge with various faulting scenarios. This COMSOL-based approach can be incorporated into advanced multi-physical numerical models to understand the Earth.
Keywords
magnetic anomalies; numerical modeling; COMSOL $Multiphysics^{(R)}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Butler, S.L. and Sinha, G., 2012, Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models. Comput. Geosci., 42, 168-176, doi:10.1016/j.cageo.2011.08.022.   DOI
2 Canales, J.P., Tucholke, B.E. and Collins, J.A., 2004, Seismic reflection imaging of an oceanic detachment fault: Atlantis megamullion (Mid-Atlantic Ridge, $30^{\circ}$10′N), Earth Planet. Sci. Lett., 222(2), 543-560, doi:10.1016/j.epsl.2004.02.023.   DOI
3 Fujii, M., Okino, K., Honsho, C., Dyment, J., Szitkar, F., Mochizuki, N. and Asada, M., 2015, High-resolution magnetic signature of active hydrothermal systems in the back-arc spreading region of the southern Mariana Trough. J. Geophys. Res. Solid Earth, 120(5), 2821-2837, doi:10.1002/2014JB011714.   DOI
4 Macdonald, K.C., Scheirer, D.S. and Carbotte, S.M., 1991, Mid-Ocean Ridges: Discontinuities, Segments and Giant Cracks. Science, 253(5023), 986-994, doi:10.1126/science.253.5023.986.   DOI
5 Reston, T.J. and Ranero, C.R., 2011, The 3-D geometry of detachment faulting at mid-ocean ridges. Geochemistry, Geophys., Geosystems, 12(7), Q0AG05, doi:10.1029/2011GC003666.   DOI
6 Szitkar, F. and Dyment, J., 2015, Near-seafloor magnetics reveal tectonic rotation and deep structure at the TAG (Trans-Atlantic Geotraverse) hydrothermal site (Mid-Atlantic Ridge, $26^{\circ}$N). Geology, 43(1), 87-90, doi:10.1130/G36086.1.   DOI
7 Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A., 1976, Applied Geophysics. Cambridge University Press, Cambridge, UK.
8 Thebault, E. et al., 2015, International Geomagnetic Reference Field: the 12th generation. Earth, Planets Sp., 67(1), 79, doi:10.1186/s40623-015-0228-9.   DOI
9 Turcotte, D.L. and Schubert, G., 2014, Geodynamics. 3rd ed., Cambridge University Press, Cambridge, UK.
10 Tucholke, B.E., Lin, J. and Kleinrock, M.C., 1998, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth, 103(B5), 9857-9866, doi:10.1029/98JB00167.   DOI
11 Vine, F.J. and Matthews, D.H., 1963, Magnetic Anomalies Over Oceanic Ridges. Nature, 199(4897), 947-949, doi:10.1038/199947a0.   DOI
12 Blakely, R., 1995, Potential Thoery in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, UK.