• Title/Summary/Keyword: Multiobjective fractional programming

Search Result 14, Processing Time 0.023 seconds

MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH A MODIFIED OBJECTIVE FUNCTION

  • Kim, Do-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.837-847
    • /
    • 2005
  • We consider multiobjective fractional programming problems with generalized invexity. An equivalent multiobjective programming problem is formulated by using a modification of the objective function due to Antczak. We give relations between a multiobjective fractional programming problem and an equivalent multiobjective fractional problem which has a modified objective function. And we present modified vector saddle point theorems.

DUALITY AND SUFFICIENCY IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH INVEXITY

  • Kim, Do-Sang;Lee, Hyo-Jung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • In this paper, we introduce generalized multiobjective fractional programming problem with two kinds of inequality constraints. Kuhn-Tucker sufficient and necessary optimality conditions are given. We formulate a generalized multiobjective dual problem and establish weak and strong duality theorems for an efficient solution under generalized convexity conditions.

  • PDF

MULTIOBJECTIVE FRACTIONAL SYMMETRIC DUALITY INVOLVING CONES

  • Ahmad, I.;Sharma, Sarita
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.151-160
    • /
    • 2008
  • A pair of multiobjective fractional symmetric dual programs is formulated over arbitrary cones. Weak, strong and converse duality theorems are proved under pseudoinvexity assumptions. A self duality theorem is also discussed.

  • PDF

OPTIMALITY FOR MULTIOBJECTIVE FRACTIONAL VARIATIONAL PROGRAMMING

  • JO, CHEONGLAI;KIM, DOSANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.59-66
    • /
    • 2000
  • We consider a multiobjective fractional variational programming problem (P) involving vector valued functions. By using the concept of proper efficiency, a relationship between the primal problem and parametric multiobjective variational problem is indicated.

  • PDF

DUALITY IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS INVOLVING (Hp, r)-INVEX FUNCTIONS

  • Jayswal, Anurag;Ahmad, I.;Prasad, Ashish Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.99-111
    • /
    • 2014
  • In this paper, we have taken step in the direction to establish weak, strong and strict converse duality theorems for three types of dual models related to multiojective fractional programming problems involving ($H_p$, r)-invex functions.

OPTIMALITY AND DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL PROGRAMMING USING α-UNIVEXITY

  • Gupta, Rekha;Srivastava, Manjari
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.359-375
    • /
    • 2014
  • In this paper, a multiobjective nondifferentiable fractional programming problem (MFP) is considered where the objective function contains a term involving the support function of a compact convex set. A vector valued (generalized) ${\alpha}$-univex function is defined to extend the concept of a real valued (generalized) ${\alpha}$-univex function. Using these functions, sufficient optimality criteria are obtained for a feasible solution of (MFP) to be an efficient or weakly efficient solution of (MFP). Duality results are obtained for a Mond-Weir type dual under (generalized) ${\alpha}$-univexity assumptions.