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Abstract

We obtain some duality results for nonsmooth multiobjective fractional pro-

gramming problem under generalized invexity assumptions on the objective and

constraint functions.

1. Introduction

Duality in fractional programming involving the optimization of a single ratio has

been of much interest in the past (see e.g. Schaible [13]). Recenlty there has been of

growing interest in studying duality theorems for multiobjective fractional programming

problem involving generalized convex functions (see e.g. Chandra, Craven and Mond

[1], Egudo [4], Mukherjee and Rao [11] and Weir [14]).

Kuk et al. [8] have introduced the concept of V -�-invexity for vector-valued func-

tions, which is a generalization of the V -invex function, and they proved the weak and

strong duality for nonsmooth multiobjective programs under the V -�-invexity assump-

tions.

In this paper, we formulate nonsmooth multiobjective fractional programming prob-

lem (FP) with V -�-invexity and prove the Weir type duality theorems and Schaible

type duality theorems for (FP) under the V -�-invexity assumptions. The concept of

e�ciency is used to formulate duality for multiobjective fractional programming prob-

lems.

2. De�nitions and Preliminaries

Let Rn be the n-dimensional Euclidean space. Throughout the paper, the following

convention for vectors in Rn will be adopted:

x > y , xi > yi for all i = 1; � � � ; n;

x >= y , xi >= yi for all i = 1; � � � ; n;

x � y , xi >= yi for all i = 1; � � � ; n; but x 6= y;
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and x 6> y is the negation of x > y.

The real-valued function f : Rn ! R is said to be locally Lipschitz if for any

z 2 Rn there exists a positive constant K and a neighborhood N of z such that, for

each x; y 2 N ,

jf(x)� f(y)j <= Kkx� yk:

In this paper, we consider the following multiobjective fractional programming prob-

lem:

(FP) minimize

 
f1(x)

g1(x)
; � � � ;

fp(x)

gp(x)

!

subject to x 2 X = fx 2 Rn
jhj(x) <= 0; for j = 1; � � � ;mg

where fi : R
n ! R; gi : R

n ! R for i = 1; � � � ; p and hj : R
n ! R for j = 1; � � � ;m

are locally Lipschitz functions. We assume that fi(x) >= 0 and gi(x) > 0 on Rn for

i = 1; � � � ; p.

The Clarke generalized directional derivative of a locally Lipschitz function f at x

in the direction d denoted by f0(x; d) is as follows:

f0(x; d) = lim sup
y!x

t # 0

t�1(f(y + td)� f(y)):

The Clarke generalized subgradient of f at x is denoted by

@f(x) = f�jf0(x; d) >= �td for all d 2 Rn
g:

Now we have the following de�nition:

De�nition 2.1. A feasible solution �x for (FP) is said to be an e�cient solution

for (FP) if there exist no x 2 X such that

fi(x)

gi(x)
<=

fi(�x)

gi(�x)
for all i = 1; � � � ; p;

and
fk(x)

gk(x)
<

fk(�x)

gk(�x)
for some k:

The problem (FP) is said to be a V -�-invex fractional problem if the locally Lipschitz

functions f; g and h satisfy that there exist �i; �j : R
n �Rn ! R+ n f0g; �i; �j 2 R

such that for all x; u 2 Rn

�i(x; u)[fi(x)� fi(u)] >= �i�(x; u) + �ik�(x; u)k
2 for each �i 2 @fi(u);

�i(x; u)[gi(x)� gi(u)] <= �i�(x; u) � �ik�(x; u)k
2 for each �i 2 @gi(u);

�j(x; u)[hj(x)� hj(u)] >= �j�(x; u) + �jk�(x; u)k
2 for each �j 2 @hj(u);
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with �; � : Rn �Rn ! Rn.

We need the following proposition from Clarke [3] in order to prove the theorems

of the next section.

Proposition 2.1. (Clarke [3]). Let p1; p2 be Lipschitz near x, and suppose

p2(x) 6= 0. Then p1=p2 is Lipschitz near x, and

@

�
p1

p2

�
(x) �

p2(x)@p1(x)� p1(x)@p2(x)

(p2(x))2
:

If in addition p1(x) >= 0; p2(x) > 0 and if p1 and �p2 are regular at x, then equality

holds and p1=p2 is regular at x.

3. Duality Theorems

For the problem (FP), we consider the following Weir type dual problem:

(FD1) maximize

 
f1(u)

g1(u)
; � � � ;

fp(u)

gp(u)

!

subject to 0 2

pX
i=1

�i@

�
fi

gi

�
(u) +

mX
j=1

�j@hj(u);

�jhj(u) >= 0; j = 1; � � � ;m;

�j >= 0; j = 1; � � � ;m;

�i >= 0; i = 1; � � � ; p;

pX
i=1

�i = 1:

The following result will be required in the proofs of strong duality results.

Lemma 3.1 (Chankong and Haimes [2]). �x is an e�cient solution for (FP) if and

only if �x solves

(FPk) minimize
fk(x)

gk(x)

subject to
fi(x)

gi(x)
<=

fi(�x)

gi(�x)
for all i 6= k;

hj(x) <= 0; j = 1; � � � ;m

for each k = 1; � � � ; p:
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We prove weak and strong duality results between (FP) and (FD1).

Theorem 3.1. (Weak duality). Let x be a feasible for V -�-invex fractional pro-

gramming problem (FP) and (u; �; �) a feasible for (FD1). If either of the following is

satis�ed:

(a) � > 0 and
pX

i=1

�i

gi(u)
�i[1 +

fi(u)

gi(u)
] +

mX
j=1

�j�j >= 0;

(b)
pX

i=1

�i

gi(u)
�i[1 +

fi(u)

gi(u)
] +

mX
j=1

�j�j > 0;

then the following cannot hold:

fi(x)

gi(x)
<=

fi(u)

gi(u)
for all i = 1; � � � ; p; (1)

and
fk(x)

gk(x)
<

fk(u)

gk(u)
for some k: (2)

Proof. (a) From the feasibility conditions and �j(x; u) > 0, we have

�j(x; u)�jhj(x) <= �j(x; u)�jhj(u) for j = 1; � � � ;m:

Then, by the V -�-invexity of h, we have

�j�j�(x; u) + �j�jk�(x; u)k
2 <= 0 for each �j 2 @hj(u):

Hence we have

mX
j=1

�j�j�(x; u) +
mX
j=1

�j�jk�(x; u)k
2 <= 0 for each �j 2 @hj(u): (3)

Now, suppose contrary to the result of the theorem that for some feasible x for (FP)

and (u; �; �) for (FD), (1) and (2) hold. If we let
fi(u)

gi(u)
= i for i = 1; � � � ; p, then, from

the assumption � > 0, we have

pX
i=1

�i[fi(x)� igi(x)] <

pX
i=1

�i[fi(u)� igi(u)]:

Then, from the V -�-invexity of f and g, we have

pX
i=1

�i�i�(x; u) +

pX
i=1

�i�ik�(x; u)k
2 <

pX
i=1

�ii�i�(x; u)�

pX
i=1

�ii�ik�(x; u)k
2 (4)
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for each �i 2 @fi(u) and each �i 2 @gi(u). Hence, from the �rst condition in constraints

of (FD1) and the assumption

pX
i=1

�i

gi(u)
�i[1 +

fi(u)

gi(u)
] +

mX
j=1

�j�j >= 0;

we obtain
mX
j=1

�j�j�(x; u) +

pX
i=1

�j�jk�(x; u)k
2 > 0;

which contradicts (3).

(b) Since � � 0, (4) holds for the inequality <=. Hence, from the assumption

pX
i=1

�i

gi(u)
�i[1 +

fi(u)

gi(u)
] +

mX
j=1

�j�j > 0;

we obtain
mX
j=1

�j�j�(x; u) +

pX
i=1

�j�jk�(x; u)k
2 > 0;

which contradicts (3).

Remark 3.1. If we assume that either f and g are strictly V -�-invex functions (i.e.,

the strict inequalities > and < hold instead of inequalities >= and <= for the de�nition

of V -�-invexity of f and g, respectively) or
P

m

j=1 �jhj(�) is strictly V -�-invex function,

and the condition
pX

i=1

�i

gi(u)
�i[1 +

fi(u)

gi(u)
] +

mX
j=1

�j�j >= 0

holds, then we can also obtain the result of the above theorem.

Corollary 3.1. (Egudo [4]). Let the conditions of weak duality (Theorem 3.1)

hold. Then if (�u; �� ; ��) is a feasible solution for (FD1) such that �u is also feasible for

(FP), then �u is e�cient for (FP) and (�u; �� ; ��) is e�cient for (FD1).

Theorem 3.2. (Strong duality). Let �x be an e�cient solution for (FP) and

assume that �x satis�es a constraint quali�cation for (FPk) for at least one k = 1; � � � ; p.

Then there exist �� 2 Rp and �� 2 Rm such that (�x; �� ; ��) is a feasible solution for (FD1).

If also weak duality (Theorem 3.1) holds between (FP) and (FD1), then (�x; �� ; ��) is an

e�cient solution for (FD1).

Proof. Since �x is e�cient solution for (FP), from Lemma 3.1, �x solves (FPk) for

each k = 1; � � � ; p. By hypothesis there exists a k such that �x satis�es a constraint qual-

i�cation for (FPk). From the generalized Karush-Kuhn-Tucker necessary conditions
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there exist � 2 Rp and � 2 Rm such that

0 2 @

�
fk

gk

�
(�x) +

X
i6=k

�i@

�
fi

gi

�
(�x) +

mX
j=1

�j@hj(�x); (5)

�jhj(�x) = 0; j = 1; � � � ;m; (6)

�i >= 0; for all i 6= k; (7)

�j >= 0; j = 1; � � � ;m: (8)

Dividing all terms in (5) and (6) by 1 +
X
i 6=k

�i and setting ��k =
1

1 +
X
i6=k

�i
> 0, ��i =

�i

1 +
X
i6=k

�i
>= 0, and ��j =

�j

1 +
X
i6=k

�i
>= 0, we conclude (�x; �� ; ��) is a feasible solution for

(FD1). Since weak duality (Theorem 3.1) holds between (FP) and (FD1), e�ciency of

(�x; �� ; ��) for (FD1) follows from Corollary 3.1.

Now we consider the following Schaible type dual problem for (FP).

(FD2) maximize (v1; � � � ; vp)

subject to 0 2

pX
i=1

�i[@fi(u)� vi@gi(u)] +
mX
j=1

�j@hj(u);

pX
i=1

�i[fi(u)� vigi(u)] >= 0;

�jhj(u) >= 0; j = 1; � � � ;m;

�j >= 0; j = 1; � � � ;m;

�i >= 0; i = 1; � � � ; p;

pX
i=1

�i = 1:

We establish the weak and strong duality theorems between (FP) and (FD2) under

assumptions of V -�-invexity.

>From Lemma 3.1, we can prove the following Kuhn-Tucker type necessary opti-

mality theorem for (FP) by the method similar to the proof in Theorem 3.4 of [7].

Theorem 3.3. Let �x be an e�cient solution of (FP) and assume that �x satis�es a

constraint quali�cation for (FPk), k = 1; � � � ; p. Then there exist �� 2 Rp, �� 2 Rm and

�v 2 Rp such that

0 2

pX
i=1

��i[@fi(�x)� �vi@gi(�x)] +
mX
j=1

��j@hj(�x);
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fi(�x)� �vigi(�x) = 0; i = 1; � � � ; p;

�jhj(�x) = 0; j = 1; � � � ;m;

�� > 0; ��j >= 0; j = 1; � � � ;m:

Theorem 3.4. (Weak duality). Let x be a feasible for V -�-invex fractional pro-

gramming problem (FP) and (u; �; �; v) a feasible for (FD2). If either of the following

is satis�ed:

(a) � > 0 and
pX

i=1

�i�i[1 +
fi(u)

gi(u)
] +

mX
j=1

�j�j >= 0;

(b)
pX

i=1

�i�i[1 +
fi(u)

gi(u)
] +

mX
j=1

�j�j > 0;

then the following cannot hold:

fi(x)

gi(x)
<= vi; for all i = 1; � � � ; p; (9)

and
fk(x)

gk(x)
< vk; for some k: (10)

Proof. (a) From the feasibility conditions and �j(x; u) > 0, we have

�j(x; u)�jhj(x) <= �j(x; u)�jhj(u):

Then, by the V -�-invexity of h, we have

�j�j�(x; u) + �j�jk�(x; u)k
2 <= 0 for each �j 2 @hj(u):

Hence we have

mX
j=1

�j�j�(x; u) +
mX
j=1

�j�jk�(x; u)k
2 <= 0 for each �j 2 @hj(u): (11)

Now, suppose contrary to the result of the theorem that for some feasible x for (FP)

and (u; �; �; v) for (FD2), such that

fi(x)

gi(x)
<= vi for all i and

fk(x)

gk(x)
< vk for some k:

Then, we have

fi(x)� vigi(x) <= 0 for all i and fk(x)� vkgk(x) < 0 for some k:



8 HUN KUK

Since � > 0, we have

pX
i=1

�i[fi(x)� vigi(x)] <

pX
i=1

�i[fi(u)� vigi(u)]:

By the the V -�-invexity of f and g, we have

pX
i=1

�i�i�(x; u) +

pX
i=1

�i�ik�(x; u)k
2 <

pX
i=1

�ivi�i�(x; u) �

pX
i=1

�ivi�ik�(x; u)k
2 (12)

for each �i 2 @fi(u) and each �i 2 @gi(u). Hence, from the �rst condition in constraints

of (FD2) and the assumption

pX
i=1

�i�i[1 + vi] +
mX
j=1

�j�j >= 0;

we obtain
mX
j=1

�j�j�(x; u) +

pX
i=1

�j�jk�(x; u)k
2 > 0;

which contradicts (11).

(b) Since � � 0, (12) holds for the inequality <=. Hence, from the assumption

pX
i=1

�i�i[1 + vi] +
mX
j=1

�j�j > 0;

we obtain
mX
j=1

�j�j�(x; u) +

pX
i=1

�j�jk�(x; u)k
2 > 0;

which contradicts (11).

Corollary 3.2. (Egudo [4]). Assume that the weak duality (Theorwm 3.3) holds

between (FP) and (FD2). If (�u; �� ; ��; �v) is a feasible solution of (FD2) such that �u is

a feasible solution of (FP), then �u is an e�cient solution of (FP) and (�u; �� ; ��; �v) is an

e�cient solution of (FD2).

Theorem 3.5. (Strong duality). Let �x be an e�cient solution of (FP) and assume

that �x satis�es a constraint quali�cation for (FPk) for at least one k = 1; � � � ; p. Then

there exist �� 2 Rp, �� 2 Rm and �v 2 Rp such that (�x; �� ; ��; �v) is feasible in (FD2). If also

weak duality (Theorem 3.4) holds between (FP) and (FD2), then (�x; �� ; ��; �v) is e�cient

for (FD2).

Proof. Since �x is e�cient for (FP), from Lemma 3.1, �x solves (FPk) for each k =

1; � � � ; p. By hypothesis there exists a k such that �x satis�es a constraint quali�cation
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for (FPk). From Theorem 3.3, there exist �� 2 Rp, �� 2 Rm and �v 2 Rp such that

(�x; �� ; ��; �v) is feasible solution of (FD2) and �v =
fi(�x)
gi(x)

; i = 1; � � � ; p. By the weak duality

theorem (Theorem 3.4), (�x; �� ; ��; �v) is an e�cient solution of (FD2).
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