# Duality for Nonsmooth Multiobjective Fractional Programming with $V-\rho$ -Invexity

# Hun Kuk

### Abstract

We obtain some duality results for nonsmooth multiobjective fractional programming problem under generalized invexity assumptions on the objective and constraint functions.

#### 1. Introduction

Duality in fractional programming involving the optimization of a single ratio has been of much interest in the past (see e.g. Schaible [13]). Recently there has been of growing interest in studying duality theorems for multiobjective fractional programming problem involving generalized convex functions (see e.g. Chandra, Craven and Mond [1], Egudo [4], Mukherjee and Rao [11] and Weir [14]).

Kuk et al. [8] have introduced the concept of V- $\rho$ -invexity for vector-valued functions, which is a generalization of the V-invex function, and they proved the weak and strong duality for nonsmooth multiobjective programs under the V- $\rho$ -invexity assumptions.

In this paper, we formulate nonsmooth multiobjective fractional programming problem (FP) with V- $\rho$ -invexity and prove the Weir type duality theorems and Schaible type duality theorems for (FP) under the V- $\rho$ -invexity assumptions. The concept of efficiency is used to formulate duality for multiobjective fractional programming problems.

### 2. Definitions and Preliminaries

Let  $\mathbb{R}^n$  be the *n*-dimensional Euclidean space. Throughout the paper, the following convention for vectors in  $\mathbb{R}^n$  will be adopted:

$$x > y \Leftrightarrow x_i > y_i$$
 for all  $i = 1, \dots, n$ ,  
 $x \ge y \Leftrightarrow x_i \ge y_i$  for all  $i = 1, \dots, n$ ,  
 $x \ge y \Leftrightarrow x_i \ge y_i$  for all  $i = 1, \dots, n$ , but  $x \ne y$ ,

This research was supported by the grant from GRAC at Seoul National University in 1999-2000.

and  $x \not> y$  is the negation of x > y.

The real-valued function  $f: \mathbb{R}^n \to \mathbb{R}$  is said to be locally Lipschitz if for any  $z \in \mathbb{R}^n$  there exists a positive constant K and a neighborhood N of z such that, for each  $x, y \in N$ ,

$$|f(x) - f(y)| \le K||x - y||.$$

In this paper, we consider the following multiobjective fractional programming problem:

(FP) minimize 
$$\left(\frac{f_1(x)}{g_1(x)}, \cdots, \frac{f_p(x)}{g_p(x)}\right)$$
  
subject to  $x \in X = \{x \in R^n | h_j(x) \leq 0, \text{ for } j = 1, \cdots, m\}$ 

where  $f_i: R^n \to R$ ,  $g_i: R^n \to R$  for  $i = 1, \dots, p$  and  $h_j: R^n \to R$  for  $j = 1, \dots, m$  are locally Lipschitz functions. We assume that  $f_i(x) \geq 0$  and  $g_i(x) > 0$  on  $R^n$  for  $i = 1, \dots, p$ .

The Clarke generalized directional derivative of a locally Lipschitz function f at x in the direction d denoted by  $f^0(x;d)$  is as follows:

$$f^{0}(x;d) = \limsup_{\substack{y \to x \\ t \downarrow 0}} t^{-1} (f(y+td) - f(y)).$$

The Clarke generalized subgradient of f at x is denoted by

$$\partial f(x) = \{\xi | f^0(x; d) \ge \xi^t d \text{ for all } d \in \mathbb{R}^n\}.$$

Now we have the following definition:

**Definition 2.1.** A feasible solution  $\bar{x}$  for (FP) is said to be an efficient solution for (FP) if there exist no  $x \in X$  such that

$$\frac{f_i(x)}{g_i(x)} \le \frac{f_i(\bar{x})}{g_i(\bar{x})} \qquad \text{for all } i = 1, \dots, p,$$

and

$$\frac{f_k(x)}{g_k(x)} < \frac{f_k(\bar{x})}{g_k(\bar{x})}$$
 for some  $k$ .

The problem (FP) is said to be a V- $\rho$ -invex fractional problem if the locally Lipschitz functions f, g and h satisfy that there exist  $\alpha_i$ ,  $\beta_j : R^n \times R^n \to R_+ \setminus \{0\}$ ,  $\rho_i$ ,  $\sigma_j \in R$  such that for all  $x, u \in R^n$ 

$$\alpha_i(x,u)[f_i(x) - f_i(u)] \geq \xi_i \eta(x,u) + \rho_i \|\theta(x,u)\|^2 \text{ for each } \xi_i \in \partial f_i(u),$$
  

$$\alpha_i(x,u)[g_i(x) - g_i(u)] \leq \zeta_i \eta(x,u) - \rho_i \|\theta(x,u)\|^2 \text{ for each } \zeta_i \in \partial g_i(u),$$
  

$$\beta_i(x,u)[h_i(x) - h_i(u)] \geq \mu_i \eta(x,u) + \sigma_i \|\theta(x,u)\|^2 \text{ for each } \mu_i \in \partial h_i(u),$$

with  $\eta$ ,  $\theta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ .

We need the following proposition from Clarke [3] in order to prove the theorems of the next section.

**Proposition 2.1.** (Clarke [3]). Let  $p_1$ ,  $p_2$  be Lipschitz near x, and suppose  $p_2(x) \neq 0$ . Then  $p_1/p_2$  is Lipschitz near x, and

$$\partial \left(\frac{p_1}{p_2}\right)(x) \subset \frac{p_2(x)\partial p_1(x) - p_1(x)\partial p_2(x)}{(p_2(x))^2}.$$

If in addition  $p_1(x) \ge 0$ ,  $p_2(x) > 0$  and if  $p_1$  and  $-p_2$  are regular at x, then equality holds and  $p_1/p_2$  is regular at x.

# 3. Duality Theorems

For the problem (FP), we consider the following Weir type dual problem:

$$(\text{FD1}) \qquad \text{maximize} \quad \left(\frac{f_1(u)}{g_1(u)}, \cdots, \frac{f_p(u)}{g_p(u)}\right)$$
 subject to 
$$0 \in \sum_{i=1}^p \tau_i \partial \left(\frac{f_i}{g_i}\right)(u) + \sum_{j=1}^m \lambda_j \partial h_j(u),$$
 
$$\lambda_j h_j(u) \geq 0, \quad j = 1, \cdots, m,$$
 
$$\lambda_j \geq 0, \quad j = 1, \cdots, m,$$
 
$$\tau_i \geq 0, \quad i = 1, \cdots, p, \quad \sum_{i=1}^p \tau_i = 1.$$

The following result will be required in the proofs of strong duality results.

**Lemma 3.1** (Chankong and Haimes [2]).  $\bar{x}$  is an efficient solution for (FP) if and only if  $\bar{x}$  solves

(FP<sub>k</sub>) minimize 
$$\frac{f_k(x)}{g_k(x)}$$
  
subject to  $\frac{f_i(x)}{g_i(x)} \le \frac{f_i(\bar{x})}{g_i(\bar{x})}$  for all  $i \ne k$ ,  
 $h_j(x) \le 0, \quad j = 1, \dots, m$ 

for each  $k = 1, \dots, p$ .

We prove weak and strong duality results between (FP) and (FD1).

**Theorem 3.1.** (Weak duality). Let x be a feasible for V- $\rho$ -invex fractional programming problem (FP) and  $(u, \tau, \lambda)$  a feasible for (FD1). If either of the following is satisfied:

(a)  $\tau > 0$  and

$$\sum_{i=1}^{p} \frac{\tau_i}{g_i(u)} \rho_i \left[1 + \frac{f_i(u)}{g_i(u)}\right] + \sum_{j=1}^{m} \lambda_j \sigma_j \ge 0,$$

(b)

$$\sum_{i=1}^{p} \frac{\tau_i}{g_i(u)} \rho_i [1 + \frac{f_i(u)}{g_i(u)}] + \sum_{j=1}^{m} \lambda_j \sigma_j > 0,$$

then the following cannot hold:

$$\frac{f_i(x)}{g_i(x)} \le \frac{f_i(u)}{g_i(u)} \qquad \text{for all } i = 1, \dots, p,$$
 (1)

and

$$\frac{f_k(x)}{g_k(x)} < \frac{f_k(u)}{g_k(u)} \qquad \text{for some } k. \tag{2}$$

*Proof.* (a) From the feasibility conditions and  $\beta_i(x, u) > 0$ , we have

$$\beta_i(x, u)\lambda_i h_i(x) \le \beta_i(x, u)\lambda_i h_i(u)$$
 for  $i = 1, \dots, m$ .

Then, by the V- $\rho$ -invexity of h, we have

$$\lambda_j \mu_j \eta(x, u) + \lambda_j \sigma_j \|\theta(x, u)\|^2 \le 0$$
 for each  $\mu_j \in \partial h_j(u)$ .

Hence we have

$$\sum_{j=1}^{m} \lambda_j \mu_j \eta(x, u) + \sum_{j=1}^{m} \lambda_j \sigma_j \|\theta(x, u)\|^2 \le 0 \qquad \text{for each } \mu_j \in \partial h_j(u).$$
 (3)

Now, suppose contrary to the result of the theorem that for some feasible x for (FP) and  $(u, \tau, \lambda)$  for (FD), (1) and (2) hold. If we let  $\frac{f_i(u)}{g_i(u)} = \gamma_i$  for  $i = 1, \dots, p$ , then, from the assumption  $\tau > 0$ , we have

$$\sum_{i=1}^{p} \tau_{i}[f_{i}(x) - \gamma_{i}g_{i}(x)] < \sum_{i=1}^{p} \tau_{i}[f_{i}(u) - \gamma_{i}g_{i}(u)].$$

Then, from the V- $\rho$ -invexity of f and g, we have

$$\sum_{i=1}^{p} \tau_{i} \xi_{i} \eta(x, u) + \sum_{i=1}^{p} \tau_{i} \rho_{i} \|\theta(x, u)\|^{2} < \sum_{i=1}^{p} \tau_{i} \gamma_{i} \zeta_{i} \eta(x, u) - \sum_{i=1}^{p} \tau_{i} \gamma_{i} \rho_{i} \|\theta(x, u)\|^{2}$$
(4)

for each  $\xi_i \in \partial f_i(u)$  and each  $\zeta_i \in \partial g_i(u)$ . Hence, from the first condition in constraints of (FD1) and the assumption

$$\sum_{i=1}^{p} \frac{\tau_i}{g_i(u)} \rho_i [1 + \frac{f_i(u)}{g_i(u)}] + \sum_{j=1}^{m} \lambda_j \sigma_j \ge 0,$$

we obtain

$$\sum_{j=1}^{m} \lambda_{j} \mu_{j} \eta(x, u) + \sum_{i=1}^{p} \lambda_{j} \sigma_{j} \|\theta(x, u)\|^{2} > 0,$$

which contradicts (3).

(b) Since  $\tau \geq 0$ , (4) holds for the inequality  $\leq$ . Hence, from the assumption

$$\sum_{i=1}^{p} \frac{\tau_i}{g_i(u)} \rho_i [1 + \frac{f_i(u)}{g_i(u)}] + \sum_{i=1}^{m} \lambda_j \sigma_j > 0,$$

we obtain

$$\sum_{j=1}^{m} \lambda_j \mu_j \eta(x, u) + \sum_{j=1}^{p} \lambda_j \sigma_j \|\theta(x, u)\|^2 > 0,$$

which contradicts (3).

**Remark 3.1.** If we assume that either f and g are strictly V- $\rho$ -invex functions (i.e., the strict inequalities > and < hold instead of inequalities  $\ge$  and  $\le$  for the definition of V- $\rho$ -invexity of f and g, respectively) or  $\sum_{j=1}^{m} \lambda_j h_j(\cdot)$  is strictly V- $\rho$ -invex function, and the condition

$$\sum_{i=1}^{p} \frac{\tau_i}{g_i(u)} \rho_i [1 + \frac{f_i(u)}{g_i(u)}] + \sum_{j=1}^{m} \mu_j \sigma_j \ge 0$$

holds, then we can also obtain the result of the above theorem.

Corollary 3.1. (Egudo [4]). Let the conditions of weak duality (Theorem 3.1) hold. Then if  $(\bar{u}, \bar{\tau}, \bar{\lambda})$  is a feasible solution for (FD1) such that  $\bar{u}$  is also feasible for (FP), then  $\bar{u}$  is efficient for (FP) and  $(\bar{u}, \bar{\tau}, \bar{\lambda})$  is efficient for (FD1).

**Theorem 3.2.** (Strong duality). Let  $\bar{x}$  be an efficient solution for (FP) and assume that  $\bar{x}$  satisfies a constraint qualification for (FP<sub>k</sub>) for at least one  $k=1,\dots,p$ . Then there exist  $\bar{\tau} \in R^p$  and  $\bar{\lambda} \in R^m$  such that  $(\bar{x}, \bar{\tau}, \bar{\lambda})$  is a feasible solution for (FD1). If also weak duality (Theorem 3.1) holds between (FP) and (FD1), then  $(\bar{x}, \bar{\tau}, \bar{\lambda})$  is an efficient solution for (FD1).

*Proof.* Since  $\bar{x}$  is efficient solution for (FP), from Lemma 3.1,  $\bar{x}$  solves (FP<sub>k</sub>) for each  $k = 1, \dots, p$ . By hypothesis there exists a k such that  $\bar{x}$  satisfies a constraint qualification for (FP<sub>k</sub>). From the generalized Karush-Kuhn-Tucker necessary conditions

there exist  $\tau \in \mathbb{R}^p$  and  $\lambda \in \mathbb{R}^m$  such that

$$0 \in \partial \left(\frac{f_k}{g_k}\right)(\bar{x}) + \sum_{i \neq k} \tau_i \partial \left(\frac{f_i}{g_i}\right)(\bar{x}) + \sum_{j=1}^m \lambda_j \partial h_j(\bar{x}), \tag{5}$$

$$\lambda_j h_j(\bar{x}) = 0, \quad j = 1, \dots, m, \tag{6}$$

$$\tau_i \ge 0, \quad \text{for all } i \ne k,$$
 (7)

$$\lambda_j \ge 0, \quad j = 1, \cdots, m. \tag{8}$$

Dividing all terms in (5) and (6) by  $1 + \sum_{i \neq k} \tau_i$  and setting  $\bar{\tau}_k = \frac{1}{1 + \sum_{i \neq k} \tau_i} > 0$ ,  $\bar{\tau}_i = \frac{1}{1 + \sum_{i \neq k} \tau_i} > 0$ 

$$\frac{\tau_i}{1+\sum_{i\neq k}\tau_i}\geq 0$$
, and  $\bar{\lambda}_j=\frac{\lambda_j}{1+\sum_{i\neq k}\tau_i}\geq 0$ , we conclude  $(\bar{x},\bar{\tau},\bar{\lambda})$  is a feasible solution for

(FD1). Since weak duality (Theorem 3.1) holds between (FP) and (FD1), efficiency of  $(\bar{x}, \bar{\tau}, \bar{\lambda})$  for (FD1) follows from Corollary 3.1.

Now we consider the following Schaible type dual problem for (FP).

(FD2) 
$$\begin{aligned} & \text{maximize} \quad (v_1, \cdots, v_p) \\ & \text{subject to} \quad 0 \in \sum_{i=1}^p \tau_i [\partial f_i(u) - v_i \partial g_i(u)] + \sum_{j=1}^m \lambda_j \partial h_j(u), \\ & \sum_{i=1}^p \tau_i [f_i(u) - v_i g_i(u)] \geq 0, \\ & \lambda_j h_j(u) \geq 0, \quad j = 1, \cdots, m, \\ & \lambda_j \geq 0, \quad j = 1, \cdots, m, \\ & \tau_i \geq 0, \quad i = 1, \cdots, p, \quad \sum_{j=1}^p \tau_i = 1. \end{aligned}$$

We establish the weak and strong duality theorems between (FP) and (FD2) under assumptions of V- $\rho$ -invexity.

¿From Lemma 3.1, we can prove the following Kuhn-Tucker type necessary optimality theorem for (FP) by the method similar to the proof in Theorem 3.4 of [7].

**Theorem 3.3.** Let  $\bar{x}$  be an efficient solution of (FP) and assume that  $\bar{x}$  satisfies a constraint qualification for (FP<sub>k</sub>),  $k = 1, \dots, p$ . Then there exist  $\bar{\tau} \in R^p$ ,  $\bar{\lambda} \in R^m$  and  $\bar{v} \in R^p$  such that

$$0 \in \sum_{i=1}^{p} \bar{\tau}_{i} [\partial f_{i}(\bar{x}) - \bar{v}_{i} \partial g_{i}(\bar{x})] + \sum_{j=1}^{m} \bar{\lambda}_{j} \partial h_{j}(\bar{x}),$$

$$f_i(\bar{x}) - \bar{v}_i g_i(\bar{x}) = 0, \quad i = 1, \dots, p,$$
  
 $\lambda_j h_j(\bar{x}) = 0, \quad j = 1, \dots, m,$   
 $\bar{\tau} > 0, \quad \bar{\lambda}_j \ge 0, \quad j = 1, \dots, m.$ 

**Theorem 3.4.** (Weak duality). Let x be a feasible for V- $\rho$ -invex fractional programming problem (FP) and  $(u, \tau, \lambda, v)$  a feasible for (FD2). If either of the following is satisfied:

(a)  $\tau > 0$  and

$$\sum_{i=1}^{p} \tau_i \rho_i \left[1 + \frac{f_i(u)}{g_i(u)}\right] + \sum_{i=1}^{m} \lambda_j \sigma_i \ge 0,$$

(b)

$$\sum_{i=1}^{p} \tau_i \rho_i \left[1 + \frac{f_i(u)}{g_i(u)}\right] + \sum_{j=1}^{m} \lambda_j \sigma_j > 0,$$

then the following cannot hold:

$$\frac{f_i(x)}{g_i(x)} \le v_i, \qquad \text{for all } i = 1, \dots, p,$$
(9)

and

$$\frac{f_k(x)}{g_k(x)} < v_k,$$
 for some  $k$ . (10)

*Proof.* (a) From the feasibility conditions and  $\beta_i(x, u) > 0$ , we have

$$\beta_j(x,u)\lambda_j h_j(x) \le \beta_j(x,u)\lambda_j h_j(u).$$

Then, by the V- $\rho$ -invexity of h, we have

$$\lambda_j \mu_j \eta(x, u) + \lambda_j \sigma_j \|\theta(x, u)\|^2 \le 0$$
 for each  $\mu_j \in \partial h_j(u)$ .

Hence we have

$$\sum_{j=1}^{m} \lambda_j \mu_j \eta(x, u) + \sum_{j=1}^{m} \lambda_j \sigma_j \|\theta(x, u)\|^2 \le 0 \qquad \text{for each } \mu_j \in \partial h_j(u). \tag{11}$$

Now, suppose contrary to the result of the theorem that for some feasible x for (FP) and  $(u, \tau, \lambda, v)$  for (FD2), such that

$$\frac{f_i(x)}{g_i(x)} \le v_i$$
 for all  $i$  and  $\frac{f_k(x)}{g_k(x)} < v_k$  for some  $k$ .

Then, we have

$$f_i(x) - v_i g_i(x) \leq 0$$
 for all  $i$  and  $f_k(x) - v_k g_k(x) < 0$  for some  $k$ .

8 HUN KUK

Since  $\tau > 0$ , we have

$$\sum_{i=1}^{p} \tau_i [f_i(x) - v_i g_i(x)] < \sum_{i=1}^{p} \tau_i [f_i(u) - v_i g_i(u)].$$

By the the V- $\rho$ -invexity of f and g, we have

$$\sum_{i=1}^{p} \tau_{i} \xi_{i} \eta(x, u) + \sum_{i=1}^{p} \tau_{i} \rho_{i} \|\theta(x, u)\|^{2} < \sum_{i=1}^{p} \tau_{i} v_{i} \zeta_{i} \eta(x, u) - \sum_{i=1}^{p} \tau_{i} v_{i} \rho_{i} \|\theta(x, u)\|^{2}$$
 (12)

for each  $\xi_i \in \partial f_i(u)$  and each  $\zeta_i \in \partial g_i(u)$ . Hence, from the first condition in constraints of (FD2) and the assumption

$$\sum_{i=1}^{p} \tau_{i} \rho_{i} [1 + v_{i}] + \sum_{j=1}^{m} \lambda_{j} \sigma_{j} \ge 0,$$

we obtain

$$\sum_{j=1}^{m} \lambda_j \mu_j \eta(x, u) + \sum_{j=1}^{p} \lambda_j \sigma_j \|\theta(x, u)\|^2 > 0,$$

which contradicts (11).

(b) Since  $\tau \geq 0$ , (12) holds for the inequality  $\leq$ . Hence, from the assumption

$$\sum_{i=1}^{p} \tau_{i} \rho_{i} [1 + v_{i}] + \sum_{j=1}^{m} \lambda_{j} \sigma_{j} > 0,$$

we obtain

$$\sum_{j=1}^{m} \lambda_{j} \mu_{j} \eta(x, u) + \sum_{i=1}^{p} \lambda_{j} \sigma_{j} \|\theta(x, u)\|^{2} > 0,$$

which contradicts (11).

Corollary 3.2. (Egudo [4]). Assume that the weak duality (Theorem 3.3) holds between (FP) and (FD2). If  $(\bar{u}, \bar{\tau}, \bar{\lambda}, \bar{v})$  is a feasible solution of (FD2) such that  $\bar{u}$  is a feasible solution of (FP), then  $\bar{u}$  is an efficient solution of (FP) and  $(\bar{u}, \bar{\tau}, \bar{\lambda}, \bar{v})$  is an efficient solution of (FD2).

**Theorem 3.5.** (Strong duality). Let  $\bar{x}$  be an efficient solution of (FP) and assume that  $\bar{x}$  satisfies a constraint qualification for (FP<sub>k</sub>) for at least one  $k=1,\cdots,p$ . Then there exist  $\bar{\tau} \in R^p$ ,  $\bar{\lambda} \in R^m$  and  $\bar{v} \in R^p$  such that  $(\bar{x}, \bar{\tau}, \bar{\lambda}, \bar{v})$  is feasible in (FD2). If also weak duality (Theorem 3.4) holds between (FP) and (FD2), then  $(\bar{x}, \bar{\tau}, \bar{\lambda}, \bar{v})$  is efficient for (FD2).

*Proof.* Since  $\bar{x}$  is efficient for (FP), from Lemma 3.1,  $\bar{x}$  solves (FP<sub>k</sub>) for each  $k = 1, \dots, p$ . By hypothesis there exists a k such that  $\bar{x}$  satisfies a constraint qualification

for (FP<sub>k</sub>). From Theorem 3.3, there exist  $\bar{\tau} \in R^p$ ,  $\bar{\lambda} \in R^m$  and  $\bar{v} \in R^p$  such that  $(\bar{x}, \bar{\tau}, \bar{\lambda}, \bar{v})$  is feasible solution of (FD2) and  $\bar{v} = \frac{f_i(\bar{x})}{g_i(\bar{x})}$ ,  $i = 1, \dots, p$ . By the weak duality theorem (Theorem 3.4),  $(\bar{x}, \bar{\tau}, \bar{\lambda}, \bar{v})$  is an efficient solution of (FD2).

## REFERENCES

- S. Chandra, B. D. Craven and B. Mond, Vector-Valued Lagrangian and Multiobjective Fractional Programming Duality, Numer. Funct. Anal. Optim. 11(1990), 239-254.
- 2. V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, North-Holland, 1983.
- 3. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
- 4. R. R. Egudo, Multiobjective Fractional Duality, Bull. Austral. Math. Soc. 37(1988), 367-378.
- 5. V. Jeyakumar, Equivalence of Saddle-Points and Optima, and Duality for a Class of Non-smooth Non-convex Problems, J. Math. Anal. Appl. 130(1988), 334-343.
- V. Jeyakumar and B. Mond, On Generalized Convex Mathematical Programming,
   J. Austral. Math. Soc. Ser. B 34(1992), 43-53
- 7. P. Kanniapan, Necessary Conditions for Optimality of Nondifferentiable Convex Multiobjective Program, J. Optim. Theory Appl., 40(1983), 167-174.
- 8. H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth Multiobjective Programs with V- $\rho$ -Invexity, Indian J. Pure Appl. Math. 29(1998), 405-412.
- 9. S. K. Mishra and R. N. Mukherjee, On Generalized Convex Multi-Objective Non-smooth Programming, J. Austral. Math. Soc. Ser. B 38(1996), 140-148.
- B. Mond and T. Weir, Generalized Concavity and Duality, Generalized Concavity in Optimization and Economics, (Edited by S. Schaible and W. T. Ziemba), pp. 263-279, Academic Press, New York, 1981.
- 11. R. N. Mukherjee and Ch. P. Rao, Multiobjective Fractional Programming under Generalized Invexity, Indian J. Pure Appl. Math. 27(1996), 1175-1183.
- 12. Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, 1985.
- 13. S. Schaible, Fractional Programming, in R. Horst and P.M. Pardalos (ed.), Handbook of Global Optimization, Kluwer Academic Publishers, 495-608, 1995.

14. T. Weir, A Duality Theorem for a Multiobjective Fractional Optimization Problem, Bull. Austral. Math. Soc. 34(1986), 415-425.

Global Analysis Research Center Seoul National University Seoul 151-742, Korea