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Duality for Nonsmooth Multiobjective
Fractional Programming with V-p-Invexity

Hun Kuk

Abstract

We obtain some duality results for nonsmooth multiobjective fractional pro-
gramming problem under generalized invexity assumptions on the objective and
constraint functions.

1. Introduction

Duality in fractional programming involving the optimization of a single ratio has
been of much interest in the past (see e.g. Schaible [13]). Recenlty there has been of
growing interest in studying duality theorems for multiobjective fractional programming
problem involving generalized convex functions (see e.g. Chandra, Craven and Mond
[1], Egudo [4], Mukherjee and Rao [11] and Weir [14]).

Kuk et al. [8] have introduced the concept of V-p-invexity for vector-valued func-
tions, which is a generalization of the V-invex function, and they proved the weak and
strong duality for nonsmooth multiobjective programs under the V-p-invexity assump-
tions.

In this paper, we formulate nonsmooth multiobjective fractional programming prob-
lem (FP) with V-p-invexity and prove the Weir type duality theorems and Schaible
type duality theorems for (FP) under the V-p-invexity assumptions. The concept of
efficiency is used to formulate duality for multiobjective fractional programming prob-
lems.

2. Definitions and Preliminaries

Let R™ be the n-dimensional Euclidean space. Throughout the paper, the following
convention for vectors in R"™ will be adopted:

T>Yy & x>y foralli=1,---,n,
T2y & T; 2Y; foralli=1,---,n,
T>Y & T 2Y; foralli=1,---,n, butz #uy,

This research was supported by the grant from GRAC at Seoul National University in 1999-2000.

1



2 HUN KUK

and z ¥ y is the negation of z > y.

The real-valued function f : R™ — R is said to be locally Lipschitz if for any
z € R™ there exists a positive constant K and a neighborhood N of z such that, for
each z, y € N,

/(@) = Fy)l = Kllz =yl

In this paper, we consider the following multiobjective fractional programming prob-

lem:
minimize fi(z) . fp(x)
(FP) ( g(z) gp(x)>

subject to z € X ={x € R"|hj(z) <0, forj=1,---,m}

where f; : R" - R, g; : R* = Rfori=1,---,pand h; : R" — Rfor j =1,---,m
are locally Lipschitz functions. We assume that f;(z) = 0 and g;(z) > 0 on R" for
= 13 Y4

The Clarke generalized directional derivative of a locally Lipschitz function f at x
in the direction d denoted by f°(z;d) is as follows:

fO(w;d) =limsup ¢~ (f(y + td) — f(y))-

y—T
tlo0

The Clarke generalized subgradient of f at z is denoted by
Of (z) = {€|f°(x;d) = £'d for all d € R"}.

Now we have the following definition:

Definition 2.1. A feasible solution z for (FP) is said to be an efficient solution
for (FP) if there exist no z € X such that

filz) _ fi(®)
9i(7) = 9i(7)

foralle=1,---,p,

and

for some k.

The problem (FP) is said to be a V-p-invex fractional problem if the locally Lipschitz
functions f, g and h satisfy that there exist o;, 5; : R" x R" — Ry \ {0}, pi, 0 €R
such that for all , v € R"

(ZE,’U,)[fZ (II) - fz(u)] £i77(xau) + pZHO(va)HZ for each fz € 8fz(u)a

( >
ai(z,u)[gi(z) — gi(w)] < Gnlz,u) — pil|0(z,u)||*> for each {; € dg;(u),
Bi(z,u)[hj(z) — hj(w)] = pin(z,u) + 0;]10(z, u)||* for each p; € Ohj(u),
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withn, 0 : R x R" — R™.

We need the following proposition from Clarke [3] in order to prove the theorems
of the next section.

Proposition 2.1. (Clarke [3]). Let p;, pe be Lipschitz near z, and suppose
p2(x) # 0. Then py/po is Lipschitz near z, and

P1 p2(2)dp1(z) — p1(z)Ip2(z)
o(o) (s(0))? |

If in addition pi(z) = 0, p2(x) > 0 and if p; and —po are regular at z, then equality
holds and p; /p9 is regular at z.

3. Duality Theorems

For the problem (FP), we consider the following Weir type dual problem:

(FD1) maximize fi(u) e fp(“)
g1(u) gp(u)
P fi m
i=1 gi =
)\]hj (U) % 0, j = s ’m’
)\] > 0, ] = 1, , M,
P
TZZO’ ZZI’ » Dy ZTZ—I
i=1

The following result will be required in the proofs of strong duality results.

Lemma 3.1 (Chankong and Haimes [2]). Z is an efficient solution for (FP) if and
only if £ solves

. fr()
(FPg) minimize (@)
subject to fZ(x) < fil#) for all ¢ # k,

foreach k=1,---,p.
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We prove weak and strong duality results between (FP) and (FD1).

Theorem 3.1. (Weak duality). Let = be a feasible for V-p-invex fractional pro-
gramming problem (FP) and (u, 7, \) a feasible for (FD1). If either of the following is
satisfied:

(a) 7> 0 and

Xp: Ti ,Oi[1+fz:gu
i=1 i

RN
() . U)H;)\] j =0,

(b)

on o i
iz:; gi(u)pl[l * gz(u)] +jz::1>‘ﬂ i >0,

then the following cannot hold:

filz) _ fi(u)
9i(7) = gi(u)

foralli=1,---,p, (1)

and

9k(®)  gr(u)
Proof.  (a) From the feasibility conditions and §;(z,u) > 0, we have

fr() < fr(u) for some k. (2)

Bj(z,u)\jhj(z) < Bj(z,u)Ajhj(u) for j=1,---,m.
Then, by the V-p-invexity of h, we have
Ajpin(z,u) + Xjoil|0(z,u)||* <0 for each p; € Ohj(u).

Hence we have

Z Njpin(z,u) + Z Ajoillf(z,u)||* <0 for each pj € Ohj(u). (3)
7=1 7j=1

Now, suppose contrary to the result of the theorem that for some feasible x for (FP)

and (u, 7, A) for (FD), (1) and (2) hold. If we let szu; =n; fori=1,---,p, then, from
gi\u
the assumption 7 > 0, we have
p p
Tilfi(@) — vigi(2)] < D mlfi(u) — yigi(u))-
i=1 =1

Then, from the V-p-invexity of f and g, we have

p

p P P
> mi&in(@,u) + Y ol 0z, w)? < Y mvicin(z,w) = Y vz, w)* (4)

=1 =1 =1 =1
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for each &; € 0f;(u) and each (; € dg;(u). Hence, from the first condition in constraints
of (FD1) and the assumption

p
-
> —pill+
=1

gi(u)

L
gi(U)]Jrj;)\] =0

we obtain

m p
Z )\j,ujn(ac,u) + Z >\j0j||0(xau)“2 >0,
j=1 i=1

which contradicts (3).
(b) Since 7 > 0, (4) holds for the inequality <. Hence, from the assumption

f: i p~[1+fi(u)]+§:>\'0'>0
= ' gi(u) j=1 7 ’

we obtain »
S () + 3 Ao 100, )2 > 0,
j=1 i=1

which contradicts (3).

Remark 3.1. If we assume that either f and g are strictly V-p-invex functions (i.e.,
the strict inequalities > and < hold instead of inequalities = and < for the definition
of V-p-invexity of f and g, respectively) or 327", Ajh;(+) is strictly V-p-invex function,
and the condition

gi(u) gi(u)

holds, then we can also obtain the result of the above theorem.

o Ji(u <
> i+ 2 S 2 0
i=1 j=1

Corollary 3.1. (Egudo [4]). Let the conditions of weak duality (Theorem 3.1)

hold. Then if (4,7, ) is a feasible solution for (FD1) such that u is also feasible for
(FP), then @ is efficient for (FP) and (@, 7, \) is efficient for (FD1).

Theorem 3.2. (Strong duality). Let Z be an efficient solution for (FP) and
assume that x satisfies a constraint qualification for (FPy) for at least one k = 1,---,p.
Then there exist 7 € RP and A € R™ such that (Z,7, \) is a feasible solution for (FD1).
If also weak duality (Theorem 3.1) holds between (FP) and (FD1), then (z,7, ) is an
efficient solution for (FD1).

Proof. Since z is efficient solution for (FP), from Lemma 3.1, Z solves (FPy) for
each k = 1,---,p. By hypothesis there exists a k such that z satisfies a constraint qual-
ification for (FPy). From the generalized Karush-Kuhn-Tucker necessary conditions
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there exist 7 € RP and XA € R™ such that

) m
OEGC&>@ﬂ+§:n3<£>@)+§:M8M@m (5)
7; 20, foralli#k, (7)
1
Dividing all terms in (5) and (6) by 1 + ZTZ' and setting 7, = ——— > 0, T; =
ik
i 3 Aj N . .
S — >0, and \; = —Z— >0, we conclude (Z,7, ) is a feasible solution for
1+ Z T; 1+ Z T;

ik i#k
(FD1). Since weak duality (Theorem 3.1) holds between (FP) and (FD1), efficiency of
(z,7,) for (FD1) follows from Corollary 3.1.

Now we consider the following Schaible type dual problem for (FP).

(FD2) maximize (vq,---,vp)

P m
subject to 0 € ZTi[afz‘(U) — v;0g;(u)] + Z AjOhj(u),
j=1

i=1
> milfi(u) — vigi(u)] 2 0,
i=1

)‘]h](u)%oﬂ jzla"'ama
)\]%Oa jzla"'ama

p
7520, i=1,--,p, Y mi=1
=1

We establish the weak and strong duality theorems between (FP) and (FD2) under
assumptions of V-p-invexity.

iFrom Lemma 3.1, we can prove the following Kuhn-Tucker type necessary opti-
mality theorem for (FP) by the method similar to the proof in Theorem 3.4 of [7].

Theorem 3.3. Let Z be an efficient solution of (FP) and assume that Z satisfies a
constraint qualification for (FPg), k = 1,---,p. Then there exist 7 € RP, A € R™ and
v € RP such that

0 €Y Hofi(z) — v:09:(F)] + > _A;0h;(Z),
j=1

=1
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fz(j)—f)zgl(j)zo’ i:]-a"'apa
A]hj(:i‘)zov j:]-a"'ama
>0, A\j =20, j=1,---,m.

Theorem 3.4. (Weak duality). Let z be a feasible for V-p-invex fractional pro-
gramming problem (FP) and (u, 7, \,v) a feasible for (FD2). If either of the following
is satisfied:

(a) 7> 0 and
p m
fi(w)
Tipill + —=]+ ) Ajo; =20,
(b) , -
fi(u)
Tipi[l + 1+ > Ajoj >0,
then the following cannot hold:
fil#) . foralli=1,---,p, (9)
gi(z)
and
fu(@) < v, for some £. (10)
9r(z)

Proof.  (a) From the feasibility conditions and §;(z,u) > 0, we have
Bj(x, w)Ajhj(z) < Bj(x,u)Ajhj(u).
Then, by the V-p-invexity of h, we have
Ajpn () + Xjoil|0(z,u)||> <0 for each p; € Ohj(u).
Hence we have
m m
Z Ajpin(z, u) + Z Ajoill0(z,u)||> <0 for each p; € Ohj(u). (11)
j=1 j=1

Now, suppose contrary to the result of the theorem that for some feasible z for (FP)
and (u, 7, A,v) for (FD2), such that

fi(z)
gi(z)

fr(2)
9k ()

< v; for all 7 and < vy, for some k.

Then, we have

fi(x) —vigi(xz) £ 0 for all i and fi(x) — vrgr(x) < 0 for some k.
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Since 7 > 0, we have

p

Y milfile) —vigi(a)] < Y- milfi(w) — vigi(w)).
i-1

i=1
By the the V-p-invexity of f and g, we have

p

P P P
> miéin(z,u) + Y mipill0(z, w)|IP < Y mviGm(z,w) = Y moipi|0(z,w) P (12)

i=1 =1 =1 =1

for each &; € df;(u) and each ¢; € dg;(u). Hence, from the first condition in constraints
of (FD2) and the assumption

m

p
ZTiPi[l + Ui] + Z )\jUj =0,
i=1 j=1

we obtain
m p
Z )\j,ujn(ac,u) + Z >\j0j||0(xau)“2 >0,
j=1 i=1

which contradicts (11).
(b) Since 7 > 0, (12) holds for the inequality <. Hence, from the assumption

p m
ZTiPi[l + Ui] + Z)\jaj > 0,
i=1 j=1

we obtain
m p
Z )\j,ujn(ac,u) + Z >\j0j||0(xau)“2 >0,
j=1 i=1

which contradicts (11).

Corollary 3.2. (Egudo [4]). Assume that the weak duality (Theorwm 3.3) holds
between (FP) and (FD2). If (4,7, )\, ) is a feasible solution of (FD2) such that @ is
a feasible solution of (FP), then @ is an efficient solution of (FP) and (@, 7, \, ) is an
efficient solution of (FD2).

Theorem 3.5. (Strong duality). Let Z be an efficient solution of (FP) and assume
that z satisfies a constraint qualification for (FPy) for at least one k = 1,---,p. Then
there exist 7 € RP, A € R™ and © € RP such that (Z,7, X, ) is feasible in (FD2). If also
weak duality (Theorem 3.4) holds between (FP) and (FD2), then (z,7, A, v) is efficient
for (FD2).

Proof. Since z is efficient for (FP), from Lemma 3.1, = solves (FPy) for each k& =
1,---,p. By hypothesis there exists a k such that Z satisfies a constraint qualification
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for (FP;). From Theorem 3.3, there exist 7 € RP, A € R™ and v € RP such that
(Z,7, X, 0) is feasible solution of (FD2) and & = fi@) 1,---,p. By the weak duality

gi(z)’

theorem (Theorem 3.4), (7,7, A, v) is an efficient solution of (FD2).

10.

11.

12.

13.
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