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Abstract. In this paper, Karush-Kuhn-Tucker type sufficient optimality
conditions are obtained for a feasible point of a nonsmooth multiobjective

fractional programming problem to be an efficient or properly efficient by
using generalized (F, ρ, σ)-type I functions.
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1. Introduction

Consider the following nonsmooth multiobjective programming problem:

(NP ) Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]

subject to x ∈ X = {x ∈ S : g(x) 5 0},
where S ⊆ Rn, the functions f = (f1, f2, . . . , fk) : S → Rk and g = (g1, g2, . . . , gm) :

S → Rm are locally Lipschitz functions.
Zhao [16] obtained Karush-Kuhn-Tucker type sufficient conditions and duality
results for a nonsmooth scalar optimization assuming Clarke [4] generalized sub-
gradients under type I functions. Kuk and Tanino [8] considered a nonsmooth
multiobjective program (NP) and established sufficient optimality conditions
and duality theorems involving generalized type I vector-valued functions. Gu-
lati and Agarwal [7] defined generalized (F, α, ρ, d)-type I functions for (NP) and
obtained sufficiency and duality results. In [12], Nobakhtian used the concept of
infine functions to establish optimality conditions and duality results for (NP).
Ahmad and Sharma [1] introduced a new class of (F, ρ, σ)-type I functions for a
nonsmooth multiobjective program and derived optimality conditions and dual-
ity theorems. Recently, Nobakhtian [15] introduced generalized (F, ρ)-convexity
for (NP) and proved duality results for a mixed type dual.
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In this paper, we consider the following multiobjective fractional programming
problem:

(FP) Minimize

[
f1(x)

h1(x)
,
f2(x)

h2(x)
, . . . ,

fk(x)

hk(x)

]
subject to x ∈ X = {x ∈ S : g(x) 5 0},

where the functions f = (f1, f2, . . . , fk) : S → Rk, h = (h1, h2, . . . , hk) : S → Rk

and g = (g1, g2, . . . , gm) : S → Rm are locally Lipschitz on S. Let fi(x) = 0 and
hi(x) > 0 for each i = 1, 2, . . . , k and x ∈ S.
We derive sufficient optimality conditions for (FP) by using the concept of gen-
eralized (F, ρ, σ)-type I functions. Our results improve the results appeared in
[9, 10, 11, 13, 14, 15].

2. Definitions and preliminaries

The following conventions of vectors in Rn will be followed throughout this pa-
per: x = y ⇔ xp = yp, p = 1, 2, . . . , n; x ≥ y ⇔ x = y, x ̸= y; x > y ⇔ xp > yp,
p = 1, 2, . . . , n. Let K = {1, 2, . . . , k}, M = {1, 2, . . . ,m} be the index sets.
A function f : Rn −→ R is said to be locally Lipschitz at x̄ ∈ Rn, if there exist
scalars δ > 0 and ϵ > 0 such that

| f(x1)− f(x2) | 5 δ ∥ x1 − x2 ∥, for all x1, x2 ∈ x̄+ ϵB,

where x̄+ ϵB is the open ball of radius ϵ about x̄.
The generalized directional derivative [4] of a locally Lipschitz function f at x
in the direction v, denoted by fo(x; v), is as follows:

f◦(x; v) = lim
y→x

sup
t↓0

f(y + tv)− f(y)

t
.

The generalized gradient [4] of f at x is denoted by

∂f(x) =
{
ξ ∈ Rn : f◦(x; v) = ξtv, for all v ∈ Rn

}
.

Now consider the following multiobjective optimization problem:

(MP) Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]

subject to x ∈ X.

The following definitions are from Geoffrion [6]:

Definition 1. A point x̄ ∈ X is said to be an efficient solution of (MP ), if there
exists no x ∈ X such that f(x) ≤ f(x̄).

Definition 2. A point x̄ ∈ X is said to be a weakly efficient solution of (MP ),
if there exists no x ∈ X such that f(x) < f(x̄).

Definition 3. An efficient solution x̄ of (MP ) is said to be properly efficient, if
there exists a scalar N > 0 such that for each i, fi(x) < fi(x̄) and x ∈ X imply
that

fi(x̄)− fi(x)

fj(x)− fj(x̄)
5 N
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for at least one j satisfying fj(x̄) < fj(x).

Definition 4. A functional F : S × S × Rn −→ R is sublinear in its third
argument, if for all x, x̄ ∈ S,

(i) F (x, x̄; a+ b) 5 F (x, x̄; a) + F (x, x̄; b), for all a, b ∈ Rn,
(ii) F (x, x̄;αa) = αF (x, x̄; a), for all α ∈ R,α = 0 and a ∈ Rn.

We recall the following generalized (F, ρ, σ)−type I functions [1]. Let f : S → Rk

and g : S → Rm be locally Lipschitz at a given point x̄ ∈ S, ρ = (ρ1, ρ2, . . . , ρk) ∈
Rk, σ = (σ1, σ2, . . . , σm) ∈ Rm, and d(·, ·) : S × S → R. Also, for x̄ ∈ X,J(x̄) =
{j ∈ M : gj(x̄) = 0} and gJ will denote the vector of active constraints at x̄.

Definition 5. For each i ∈ K and j ∈ M , (fi, gj) is said to be (F, ρ, σ)-type I
at x̄ ∈ S, if for all x ∈ X, we have

fi(x)− fi(x̄) = F (x, x̄; ξi) + ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄), (2.1)

−gj(x̄) = F (x, x̄; ηj) + σjd
2(x, x̄), for all ηj ∈ ∂gj(x̄).

If (2.1) is a strict inequality, then we say that (fi, gj) is (F, ρ, σ)-semistrictly-type
I at x̄.

Definition 6. For each i ∈ K and j ∈ M , (fi, gj) is said to be (F, ρ, σ)-
prestrictquasi-strictlypseudo-type I at x̄ ∈ S, if for all x ∈ X, we have

fi(x) < fi(x̄) =⇒ F (x, x̄; ξi) 5 −ρid
2(x, x̄), for all ξi ∈ ∂fi(x̄),

F (x, x̄; ηj) = −σjd
2(x, x̄) =⇒ −gj(x̄) > 0, for all ηj ∈ ∂gj(x̄).

Definition 7. For each i ∈ K and j ∈ M , (fi, gj) is said to be (F, ρ, σ)-
pseudoquasi-type I at x̄ ∈ S, if for all x ∈ X, we have

F (x, x̄; ξi) = −ρid
2(x, x̄) =⇒ fi(x) = fi(x̄), for all ξi ∈ ∂fi(x̄), (2.2)

−gj(x̄) 5 0 =⇒ F (x, x̄; ηj) 5 −σjd
2(x, x̄), for all ηj ∈ ∂gj(x̄).

If (2.2) is satisfied as

F (x, x̄; ξi) = −ρid
2(x, x̄) =⇒ fi(x) > fi(x̄), for all ξi ∈ ∂fi(x̄),

then we say that (fi, gj) is (F, ρ, σ)-strictly-pseudoquasi-type I at x̄.
In order to derive sufficient optimality conditions, we will invoke the following
results. We use Dinkelbach-type [5] approach to get the following auxiliary
parametric problem:

(FP)λ Minimize f(x) = [f1(x)− λ̄1h1(x), f2(x)− λ̄2h2(x), . . . , fk(x)− λ̄khk(x)]

subject to x ∈ X.

where λ̄i, i ∈ K, are parameters. The problem is equivalent to (FP) in the sense
that for particular choices of λ̄i, i ∈ K, the two problems have the same set of
efficient solutions.
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In relation to (FP)λ, we consider the following scalar minimization problem on
the lines of Geoffrion [6]:

(FP)
µ
λ Minimize

∑
i∈K

µi(fi(x)− λ̄ihi(x))

subject to x ∈ X.

Lemma 1 ([6]). If x̄ is an optimal solution of (FP)
µ
λ , for some µ ∈ Rk, with

strictly positive components, where λ̄i =
fi(x̄)

hi(x̄)
, i ∈ K, then x̄ is a properly

efficient solution of (FP).
Lemma 2 ([3]). x̄ is an efficient solution of (FP)λ, if and only if x̄ solves
(FP )r, r ∈ K:

(FP)r Minimize fr(x)− λ̄rhr(x)

subject to fi(x)− λ̄ihi(x) 5 fi(x̄)− λ̄ihi(x̄), for all i ̸= r,

g(x) 5 0, x ∈ S.

Proposition 1 (Karush-Kuhn-Tucker type necessary conditions) ([9]). If x̄ is
an efficient solution of (FP), then there exist µ̄ ∈ Rk and ν̄ ∈ Rm such that

0 ∈
∑
i∈K

µ̄i[∂fi(x̄)− λ̄i∂hi(x̄)] +
∑

j∈J(x̄)

ν̄j∂gj(x̄),

ν̄jgj(x̄) = 0, j ∈ M,

µ̄ > 0, ν̄ = 0,

where λ̄i =
fi(x̄)

hi(x̄)
, i ∈ K.

3. Sufficiency

In this section, we obtain sufficient conditions for a feasible point of (FP) to be
efficient and properly efficient.

Theorem 1. Let x̄ ∈ X, and let there exist scalars µ̄i > 0, i ∈ K and ν̄j = 0,
j ∈ J(x̄) such that

0 ∈
∑
i∈K

µ̄i[∂fi(x̄)− λ̄i∂hi(x̄)] +
∑

j∈J(x̄)

ν̄j∂gj(x̄), (3.1)

ν̄jgj(x̄) = 0, j ∈ M, (3.2)

where λ̄i =
fi(x̄)

hi(x̄)
, i ∈ K.

If

(i) [fi − λ̄ihi, gj ], i ∈ K, j ∈ J(x̄) is (F, ρ, σ)-type I at x̄; and
(ii)

∑
i∈K

µ̄iρi +
∑

j∈J(x̄)

ν̄jσj = 0,

then x̄ is a properly efficient solution of (FP).
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Proof. By (3.1) we obtain that there exist ξi ∈ ∂fi(x̄), ζi ∈ ∂hi(x̄), i ∈ K and
ηj ∈ ∂gj(x̄), j ∈ J(x̄) satisfying∑

i∈K

µ̄i[ξi − λ̄iζi] +
∑

j∈J(x̄)

ν̄jηj = 0. (3.3)

From hypothesis (i), we get

[fi(x)− λ̄ihi(x)]− [fi(x̄)− λ̄ihi(x̄)]

≥ F (x, x̄; ξi − λ̄iζi) + ρid
2(x, x̄) for all ξi ∈ ∂fi(x̄), ζi ∈ ∂hi(x̄),

(3.4)

−gj(x̄) = F (x, x̄; ηj) + σjd
2(x, x̄) for all ηj ∈ ∂gj(x̄). (3.5)

On multiplying (3.4) by µ̄i > 0, i ∈ K, and (3.5) by ν̄j = 0, j ∈ J(x̄), using the
sublinearity of F ; and taking summation over i and j, respectively, we get∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)]−
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)]

≥ F (x, x̄;
∑
i∈K

µ̄i(ξi − λ̄iζi)) +
∑
i∈K

µ̄iρid
2(x, x̄) for all ξi ∈ ∂fi(x̄), ζi ∈ ∂hi(x̄),

0 = −
∑

j∈J(x̄)

ν̄jgj(x̄) = F (x, x̄;
∑

j∈J(x̄)

ν̄jηj)+
∑

j∈J(x̄)

ν̄jσjd
2(x, x̄) for all ηj ∈ ∂gj(x̄).

Combining these inequalities, and using the sublinearity of F , we obtain∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)]−
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)]

≥ F (x, x̄;
∑
i∈K

µ̄i(ξi − λ̄iζi) +
∑

j∈J(x̄)

ν̄jηj) + (
∑
i∈K

µ̄iρi +
∑

j∈J(x̄)

ν̄jσj)d
2(x, x̄)

≥ F (x, x̄;
∑
i∈K

µ̄i(ξi − λ̄iζi) +
∑

j∈J(x̄)

ν̄jηj), (by hyp. (ii)),

which on using (3.3) with the sublinearity of F , yields∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)]−
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)] = 0,

or ∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)] =
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)]. (3.6)

The inequality (3.6) shows that x̄ is an optimal solution of (FP)
µ
λ . Hence by

Lemma 1, we can conclude that x̄ is a properly efficient solution of (FP). �

Theorem 2. Let x̄ ∈ X, and let there exist scalars µ̄i > 0, i ∈ K and ν̄j = 0,
j ∈ J(x̄) satisfying (3.1) and (3.2). If

(i) [
∑
i∈K

µ̄i(fi − λ̄ihi), ν̄JgJ ] is (F, ρ1, σ1)-pseudoquasi-type I at x̄; and

(ii) ρ1 + σ1 = 0,

then x̄ is a properly efficient solution of (FP).
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Proof. From (3.2), we get

ν̄jgj(x̄) = 0, j ∈ J(x̄), or −
∑

j∈J(x̄)

ν̄jgj(x̄) 5 0.

Then the second part of hypothesis (i) implies

F (x, x̄;
∑

j∈J(x̄)

ν̄jηj) + σ1d
2(x, x̄) 5 0,

which in view of (3.3), hypothesis (ii), and the sublinearity of F , gives

F (x, x̄;
∑
i∈K

µ̄i(ξi − λ̄iζi) + ρ1d
2(x, x̄) = 0.

The above inequality along with the first part of assumption (i) yields∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)] =
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)],

which is precisely (3.6). Hence, x̄ is a properly efficient solution of (FP). �

Theorem 3. Let x̄ ∈ X, and let there exist scalars µ̄i > 0, i ∈ K and ν̄j = 0,
j ∈ J(x̄) satisfying (3.1) and (3.2). If

(i) [
∑
i∈K

µ̄i(fi− λ̄ihi), ν̄JgJ ] is (F, ρ2, σ2)-prestrictquasi-strictlypseudo-type I

at x̄; and
(ii) ρ2 + σ2 = 0,

then x̄ is a properly efficient solution of (FP).

Proof. The proof follows on the similar lines of Theorem 2. �

Remark 1. If we replace µ̄i > 0, i ∈ K by µ̄i = 0, i ∈ K,
∑
i∈K

µ̄i = 1 in the

above theorems and other conditions are imposed on [
∑
i∈K

µ̄i(fi − λ̄ihi), ν̄JgJ ],

we get stronger conclusion that x̄ is an efficient solution of (FP). The results are
shown below:

Theorem 4. Let x̄ ∈ X, and let there exist scalars µ̄i = 0, i ∈ K,
∑
i∈K

µ̄i = 1

and ν̄j = 0, j ∈ J(x̄) satisfying (3.1) and (3.2). If

(i) [
∑
i∈K

µ̄i(fi − λ̄ihi), ν̄JgJ ] is (F, ρ3, σ3)-semistrictly-type I at x̄; and

(ii) ρ3 + σ3 = 0,

then x̄ is an efficient solution of (FP).

Proof. Suppose to the contrary that x̄ is not an efficient solution of (FP), then
there exists x ∈ X such that[

f1(x)

h1(x)
,
f2(x)

h2(x)
, . . . ,

fk(x)

hk(x)

]
≤

[
f1(x̄)

h1(x̄)
,
f2(x̄)

h2(x̄)
, . . . ,

fk(x̄)

hk(x̄)

]
. (3.7)
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By hypothesis (i), we have∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)]−
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)]

> F (x, x̄;
∑
i∈K

µ̄i(ξi − λ̄iζi)) + ρ3d
2(x, x̄) for all ξi ∈ ∂fi(x̄), ζi ∈ ∂hi(x̄),

0 = −
∑

j∈J(x̄)

ν̄jgj(x̄) = F (x, x̄;
∑

j∈J(x̄)

ν̄jηj) + σ3d
2(x, x̄) for all ηj ∈ ∂gj(x̄).

Now following the proof of Theorem 1, we reach at∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)] >
∑
i∈K

µ̄i[fi(x̄)− λ̄ihi(x̄)].

As λ̄i =
fi(x̄)

hi(x̄)
, i ∈ K, it follows that

∑
i∈K

µ̄i[fi(x)− λ̄ihi(x)] > 0.

Since µ̄i = 0, i ∈ K,
∑
i∈K

µ̄i = 1, we get

(f1(x)− λ̄1h1(x), f2(x)− λ̄2h2(x), . . . , fk(x)− λ̄khk(x)) > 0,

which in turn yields[
f1(x)

h1(x)
,
f2(x)

h2(x)
, . . . ,

fk(x)

hk(x)

]
> (λ̄1, λ̄2, . . . , λ̄k),

or [
f1(x)

h1(x)
,
f2(x)

h2(x)
, . . . ,

fk(x)

hk(x)

]
>

[
f1(x̄)

h1(x̄)
,
f2(x̄)

h2(x̄)
, . . . ,

fk(x̄)

hk(x̄)

]
,

which is a contradiction to (3.7). Hence x̄ is an efficient solution of (FP). �
The following theorem can be proved along the lines of Theorem 4.

Theorem 5. Let x̄ ∈ X, and let there exist scalars µ̄i = 0, i ∈ K,
∑
i∈K

µ̄i = 1

and ν̄j = 0, j ∈ J(x̄) satisfying (1) and (2). If

(i) [
∑
i∈K

µ̄i(fi−λ̄ihi), ν̄JgJ ] is (F, ρ4, σ4)-strictlypseudoquasi-type I at x̄; and

(ii) ρ4 + σ4 = 0,

then x̄ is an efficient solution of (FP).

Remark 2. It may be noted that Theorems 4 and 5 also hold for weakly efficient
solution of (FP).
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