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OPTIMALITY AND DUALITY IN NONDIFFERENTIABLE

MULTIOBJECTIVE FRACTIONAL PROGRAMMING USING

α-UNIVEXITY

REKHA GUPTA∗ AND MANJARI SRIVASTAVA

Abstract. In this paper, a multiobjective nondifferentiable fractional pro-
gramming problem (MFP) is considered where the objective function con-
tains a term involving the support function of a compact convex set. A
vector valued (generalized) α-univex function is defined to extend the con-

cept of a real valued (generalized) α-univex function. Using these functions,
sufficient optimality criteria are obtained for a feasible solution of (MFP)
to be an efficient or weakly efficient solution of (MFP). Duality results

are obtained for a Mond-Weir type dual under (generalized) α-univexity
assumptions.
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1. Introduction

Most of the real world problems which arise in the areas of portfolio selection,
stock cutting, game theory and many decision making problems in management
science etc. are (multiobjective) fractional programming problems. Extensive
researches have been reported in the literature for the multiobjective nonlin-
ear (nondifferentiable) fractional programming problems involving generalized
convex functions by various authors, for details see ([1,4,6-13,15,18-21]) and ref-
erences therein. The areas which have been explored are mainly to weaken the
convexity and to relax the differentiability assumption of the functions used in
developing optimality and duality of the above programming problems. Bec-
tor et al.[3] introduced univex functions by relaxing the definition of an invex
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function and obtained optimality and duality results for a nonlinear program-
ming problem. Jayswal[8] defined α-univexity and its generalizations for a real
valued function and proved duality theorems for a nondifferentiable generalized
fractional programming problem.

Different authors have used different forms of nondifferentiability to obtain
optimality conditions and duality theory for fractional programming problem
under generalized convexity assumptions. Authors like Mond [15], Singh [19],
Zhang and Mond [21] and in the references cited therein considered a class of
nondifferentiable fractional programming problems containing square root terms
in the objective function and derived optimality criteria and discussed duality
theory. Non smooth optimization involves functions for which subderivatives
exist [5]. Square root of a positive semidefinite quadratic form is one of the few
types of a nondifferentiable function whose subdifferential can be written explic-
itly. Square root of a quadratic form can be replaced by a more general function,
namely, the support function of a compact convex set, whose subdifferential can
be simply expressed. For these considerations Mond and Schechter[16] consid-
ered programs which contain support function in objective function and studied
symmetric duality. Kim et al. [9] established necessary and sufficient optimality
conditions and proved duality results for weakly efficient solutions of multiob-
jective fractional programming problem containing support functions under the
assumption of (V, ρ) invex functions. Later in [10], Kim et al. established duality
results using (V, ρ) invexity for the same problem with cone constraints.

Motivated by the above researches, in this paper, we consider a nondifferen-
tiable multiobjective fractional programming problem (MFP) over cones with
objective function containing support function of a compact convex set. We
introduce the concept of α-univexity and its various generalizations for a vector
valued function. This generalizes the concept of α-univexity for a scalar valued
function[8]. We also give the examples to show the existence of above defined
classes of functions. Sufficient optimality conditions for a (weakly) efficient so-
lution of (MFP) are derived using these newly defined classes of (generalized)
α-univex functions. A Mond-Weir type dual is proposed for (MFP) and stan-
dard duality theorems are proved assuming the functions to be (generalized)
α-univex.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and let Rn
+ be its non negative

orthant. The following convention for inequalities will be used in this paper. If
x, u ∈ Rn, then

x < u ⇔ u− x ∈ int Rn
+;

x 5 u ⇔ u− x ∈ Rn
+;

x ≤ u ⇔ u− x ∈ Rn
+/{0};

x ≮ u is the negation of x < u.
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Note : For x, u ∈ R, we use x ≤ u to denote x is less than or equal to u.

Definition 2.1 ([17]). A non empty set C in Rn is said to be a cone if for each
x ∈ C and λ ≥ 0, λx ∈ C. If in addition C is convex then C is called a convex
cone.

Definition 2.2 ([17]). Let C ⊆ Rn be a cone. The set

C∗ = {z ∈ Rn | xT z ≤ 0, ∀ x ∈ C},

is called the polar cone of C.

We now consider the following nondifferentiable multiobjective fractional pro-
gramming problem:

(MFP) Minimize F (x) =

(
f1(x) + s(x|D1)

g1(x)
, . . . ,

fk(x) + s(x|Dk)

gk(x)

)
subject to h(x) ∈ C∗

2 , x ∈ C1,

where f : X → Rk, g : X → Rk and h : X → Rm are continuously differentiable
functions over an open subset X of Rn. C1 ⊆ X and C2 are closed convex
cones with non empty interiors in Rn and Rm respectively, Di(i = 1, 2, . . . , k)
are compact convex sets in Rn and s(x|Di) = max{< x, y > |y ∈ Di} denotes
the support function of Di. Let X0 = {x ∈ X : x ∈ C1, h(x) ∈ C∗

2} be the set of
all feasible solutions of (MFP) and

fi(x) + s(x|Di) ≥ 0 , g(x) > 0, ∀ x ∈ X.

For any w = (w1, w2, . . . , wk) ∈ Rn × Rn × . . . × Rn and x ∈ Rn, xTw =
(xTw1, x

Tw2, . . . , x
Twk).

We now review some known facts about support functions. The support
function s(x|C) of compact convex set C ⊆ Rn, being convex and everywhere
finite, has a subgradient at every x in the sense of Rockafellar[17], that is, there
exists z ∈ C such that

s(y|C) ≥ s(x|C) + zT (y − x), ∀ y ∈ C.

Equivalently,

zTx = s(x|C).

The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For any set D ⊆ Rn, the normal cone to D at any point x ∈ D is defined by

ND(x) = {y ∈ Rn | yT (z − x) ≤ 0, ∀ z ∈ D}.

If C is a compact convex set then y ∈ NC(x) iff

s(y|C) = xT y,

or equivalently x ∈ ∂s(y|C).
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Definition 2.3. A feasible solution x ∈ X0 is said to be a weakly efficient
solution of (MFP) if there does not exist any x ∈ X0 such that

F (x) < F (x).

Definition 2.4. A feasible solution x ∈ X0 is said to be an efficient solution of
(MFP) if there does not exist any x ∈ X0 such that

F (x) ≤ F (x).

We recall the definition of α-univexity for a differentiable real valued function
f : X → R.

Definition 2.5 ([8]). The function f is said to be α-univex at x ∈ X with
respect to α : X × X → R+ \ {0}, b : X × X → R+, ϕ : R → R and
η : X ×X → Rn if for every x ∈ X, we have

b(x, x) ϕ (f(x)− f(x)) ≥ < α(x, x)▽ f(x), η(x, x) > .

Now to extend the above concept of α-univexity to multiobjective program-
ming we give the following definitions for a vector valued differentiable function
f : X → Rk. Assume that α : X ×X → R+ \ {0}, b : X ×X → Rk

+, ϕ : R → R
and η : X ×X → Rn.

Definition 2.6. The function f : X → Rk is said to be α-univex at x ∈ X
with respect to α, b, ϕ, and η if for every x ∈ X and for each i = 1, 2, . . . , k, we
have

bi(x, x) ϕ (fi(x)− fi(x)) ≥ < α(x, x)▽ fi(x), η(x, x) > . (2.1)

If (2.1) is a strict inequality for all x ̸= x, then f is said to be strict α-univex
function.

Definition 2.7. The function f : X → Rk is said to be pseudo α-univex at
x ∈ X with respect to α, b, ϕ, and η if for every x ∈ X and for each i = 1, 2, . . . , k,
we have

bi(x, x) ϕ(fi(x)− fi(x)) < 0 ⇒ < α(x, x)▽ fi(x), η(x, x) > < 0.

Definition 2.8. The function f : X → Rk is said to be strict pseudo α-
univex at x ∈ X with respect to α, b, ϕ, and η if for every x ∈ X (x ̸= x) and
for each i = 1, 2, . . . , k, we have

bi(x, x) ϕ (fi(x)− fi(x)) ≤ 0 ⇒ < α(x, x)▽ fi(x), η(x, x) > < 0.

Definition 2.9. The function f : X → Rk is said to be quasi α-univex at
x ∈ X with respect to α, b, ϕ, and η if for every x ∈ X and for each i = 1, 2, . . . , k,
we have

bi(x, x) ϕ (fi(x)− fi(x)) ≤ 0 ⇒ < α(x, x)▽ fi(x), η(x, x) > ≤ 0.
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f is said to be (strict) α-univex, (strict) pseudo α-univex and quasi α-univex
on X if it is (strict) α-univex, (strict) pseudo α-univex and quasi α-univex
respectively at every x ∈ X.

We now give the following example to show the existence of vector valued
α-univex function.

Example 2.10. Let X = ]0, 1[ and f : X → R2 is given by

f(x) = (f1(x), f2(x)) = (x2, 2x+ 1).

Also let, b1(x, u) = u, b2(x, u) = x+ u, η(x, u) =
x− u

3
, α(x, u) = x+ u and

ϕ(x) =

{
2x, x ≥ 0
−2x, x < 0.

Then f is α-univex on X with respect to α, b, ϕ and η.

We note that every α-univex function is pseudo α-univex as well as quasi α-
univex but the converse is not true. To illustrate this fact, we give the following
examples of pseudo α-univex and quasi α-univex functions which are not α-
univex.

Example 2.11. Let X =
]
0,

π

2

[
and f : X → R2 is given by

f(x) = (f1(x), f2(x)) = (cosx, sinx).

Also let, ϕ(x) = 2x, η(x, u) = u− x, α(x, u) = x2 + u,

b1(x, u) =

{
0, x ≥ u
xu, x < u

and b2(x, u) =

{
0, u ≥ x

x+ u, u < x.

Then f is pseudo α-univex on X with respect to α, b, ϕ and η but it is not

α-univex on X because for x =
π

3
, u =

π

6

b1(x, u) ϕ (f1(x)− f1(u)) < < α(x, u)▽ f1(u), η(x, u) > .

Example 2.12. Let X =
]
0,

π

2

[
and f : X → R2 is given by

f(x) = (f1(x), f2(x)) = (sinx, cosx).

Also let, ϕ(x) = 2x, α(x, u) = x+ u,

η(x, u) =

{
sinx− sinu

cosu
, x ≥ u

0, x < u
and b1(x, u) = b2(x, u) =

{
1, x ≥ u
0, x < u.

Then f is quasi α-univex on X with respect to α, b, ϕ and η but it is not α-univex

on X because for x =
5π

12
, u =

π

3

b1(x, u) ϕ (f1(x)− f1(u)) < < α(x, u)▽ f1(u), η(x, u) > .

Now, we give the following lemma.
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Lemma 2.13. Assume that f and g are differentiable functions defined from
X to Rk, where X is an open subset of Rn and g(x) > 0 for all x ∈ X. If for
w = (w1, w2, . . . , wk) ∈ Rn×Rn× . . .×Rn, f(· )+(· )Tw and −g(· ) are α-univex

at x ∈ X with respect to α, b, ϕ and η and ϕ is linear, then

(
f(· ) + (· )Tw

g(· )

)
is

α-univex at x with respect to α, b, ϕ and η, where

bi(x, x) =
gi(x)

gi(x)
bi(x, x), ∀ i = 1, 2, . . . , k.

Proof. Consider for each i = 1, 2, . . . , k and x ∈ X,

bi(x, x) ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
= bi(x, x) ϕ

((
fi(x) + xTwi

)
−
(
fi(x) + xTwi

)
gi(x)

+
(
fi(x) + xTwi

)( 1

gi(x)
− 1

gi(x)

))

= bi(x, x) ϕ

((
fi(x) + xTwi

)
−
(
fi(x) + xTwi

)
gi(x)

+

(
fi(x) + xTwi

)
gi(x)gi(x)

(
− gi(x) + gi(x)

))
.

As ϕ is linear, we have that

bi(x, x) ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
=

1

gi(x)
bi(x, x)ϕ

(
(fi(x) + xTwi)− (fi(x) + xTwi)

)
+

(fi(x) + xTwi)

gi(x)gi(x)
bi(x, x)ϕ (−gi(x) + gi(x)) , ∀i = 1, 2, . . . , k.

Since f(· )+ (· )Tw and −g(· ) are α-univex at x with respect to α, b, ϕ and η, we
have for each i = 1, 2, . . . , k,

bi(x, x) ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
≥ 1

gi(x)

⟨
α(x, x)▽ (fi(x) + xTwi) , η(x, x)

⟩
− (fi(x) + xTwi)

gi(x)gi(x)
⟨α(x, x)▽ gi(x) , η(x, x)⟩

=
α(x, x)

gi(x)gi(x)
< gi(x)▽ (fi(x) + xTwi)− (fi(x) + xTwi)▽ gi(x), η(x, x) >

= α(x, x)
gi(x)

gi(x)

⟨
gi(x)▽ (fi(x) + xTwi)− (fi(x) + xTwi)▽ gi(x)

(gi(x))2
, η(x, x)

⟩
= α(x, x)

gi(x)

gi(x)

⟨
▽

(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
.
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Therefore,

gi(x)

gi(x)
bi(x, x) ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
≥

⟨
α(x, x)▽

(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
, ∀i = 1, 2, . . . , k

⇒ bi(x, x)ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
≥

⟨
α(x, x)▽

(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
, ∀i = 1, 2, . . . , k,

where bi(x, x) =
gi(x)

gi(x)
bi(x, x), ∀i = 1, 2, . . . , k. Therefore,

(
f(· ) + (· )Tw

g(· )

)
is

α-univex at x with respect to α, b, ϕ and η. �

Remark 2.1. The following are satisfied:

(1) If in Lemma 2.13 the functions f(· )+(· )Tw and −g(· ) are assumed to be
strict α-univex and α-univex respectively at x with respect to α, b, ϕ and
η, then moving on the similar lines as in Lemma 2.13, it can be shown

that

(
f(· ) + (· )Tw

g(· )

)
is strict α-univex at x with respect to α, b, ϕ and

η.
(2) Since every α-univex function is pseudo α-univex, therefore assuming all

the conditions of Lemma 2.13,

(
f(· ) + (· )Tw

g(· )

)
is also pseudo α-univex

at x.
(3) Again by using the fact that every strict α-univex function is strict

pseudo α-univex, the function

(
f(· ) + (· )Tw

g(· )

)
is strict pseudo α-univex

at x if the functions f(· ) + (· )Tw and −g(· ) are assumed to be strict
α-univex and α-univex respectively at x in Lemma 2.13.

We now give an example which illustrates the above Lemma 2.13 and Remark
2.14(2).

Example 2.14. Let X =]− 1, 1[ and f : X → R2, g : X → R2 are defined by

f(x) = (f1(x), f2(x)) = (x+ 2, x2),

g(x) = (g1(x), g2(x)) = (−x2 + 3,−x4 + 4).

Also let, α(x, x) = x + 2, b1(x, x) = x2 + x2, b2(x, x) = x2 + 1, ϕ(x) = x,

η(x, x) = x2 − x2, w = (w1, w2) = (1, 0) and x = 0. Then

(
f(· ) + (· )Tw

g(· )

)
is

α-univex and hence pseudo α-univex at x = 0 with respect to α, b, ϕ and η as
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f(· ) + (· )Tw and −g(· ) are α-univex at x = 0 with respect to α, b, ϕ and η,
where

bi(x, x) =
gi(x)

gi(x)
bi(x, x) for i = 1, 2.

3. Optimality Conditions

The following lemma giving necessary optimality conditions will be used in
the sequel. The lemma is cited in [10] and can be obtained from [2] and [9].

Lemma 3.1. (Necessary Optimality Conditions) Let x be a weakly efficient so-
lution of (MFP) at which a suitable constraint qualification [14] be satisfied, then
there exist w = (w1, w2, . . . , wk) ∈ D1×D2× . . .×Dk, λ ∈ Rk, λ ≥ 0 and y ∈ C2

such that(
λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)T

(x− x) ≥ 0, ∀ x ∈ C1, (3.1)

yTh(x) = 0, (3.2)

s(x|Di) = xTwi, i = 1, 2, . . . , k. (3.3)

We now establish some sufficient optimality conditions for x ∈ X0 to be a
(weakly) efficient solution of (MFP) under (generalized) α-univexity defined in
the previous section.

Theorem 3.2. Let x be a feasible solution of (MFP) and that there exist λ ∈
Rk, λ ≥ 0, w = (w1, w2, . . . , wk) ∈ D1 ×D2 × . . .×Dk and y ∈ C2 such that(

λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)T

(x− x) ≥ 0, ∀ x ∈ Rn, (3.4)

yTh(x) = 0, (3.5)

s(x|Di) = xTwi, i = 1, 2, . . . , k. (3.6)

Further assume that all the conditions of Lemma 2.13 are satisfied at x and w
with bi(x, x) > 0 for all i = 1, 2, . . . , k and a < 0 ⇒ ϕ(a) < 0. Also if any one
of the following conditions hold:

(a) yTh(· ) is α-univex at x with respect to α, b0, ϕ0 and η with b0(x, x) > 0
and ϕ0(a) > 0 ⇒ a > 0,

(b) yTh(· ) is quasi α-univex at x with respect to α, b0, ϕ0 and η with a ≤
0 ⇒ ϕ0(a) ≤ 0,

then x is a weakly efficient solution of (MFP).

Proof. Suppose that x is not a weakly efficient solution of (MFP). Then there
exists some x ∈ X0 such that

fi(x) + s(x|Di)

gi(x)
<

fi(x) + s(x|Di)

gi(x)
, ∀i = 1, 2, . . . , k.
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Using the fact that s(x|Di) ≥ xTwi for all i = 1, 2, . . . , k and s(x|Di) = xTwi,
we have for each i = 1, 2, . . . , k that

fi(x) + xTwi

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
<

fi(x) + s(x|Di)

gi(x)
=

fi(x) + xTwi

gi(x)

⇒ fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)
< 0. (3.7)

Now assume that (a) holds. By Lemma 2.13,

(
f(· ) + (· )Tw

g(· )

)
is α-univex at

x with respect to α, b, ϕ and η where bi(x, x) =
gi(x)

gi(x)
bi(x, x). Since a < 0 ⇒

ϕ(a) < 0 and bi(x, x) > 0, (3.7) gives

bi(x, x)ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
< 0, ∀ i = 1, 2, . . . , k. (3.8)

Using the definition of α-univexity of

(
f(· ) + (· )Tw

g(· )

)
, (3.8) implies⟨

α(x, x)▽
(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
< 0, ∀ i = 1, 2, . . . , k.

Since λ ≥ 0, therefore multiplying each of the above inequalities by λi and
summing over i = 1, 2, . . . , k, we get that⟨

α(x, x) λ
T ▽

(
f(x) + xTw

g(x)

)
, η(x, x)

⟩
< 0. (3.9)

As (3.4) holds for all x ∈ Rn, we have

λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x) = 0. (3.10)

Now using (3.10) in (3.9) we get that⟨
α(x, x) ▽ yTh(x) , η(x, x)

⟩
> 0.

Since yTh(· ) is α-univex at x ∈ X0, the above inequality implies

b0(x, x) ϕ0 (yTh(x)− yTh(x)) > 0.

Using (3.5), we get

b0(x, x) ϕ0(y
Th(x)) > 0.

As b0(x, x) > 0 and ϕ0(a) > 0 ⇒ a > 0, we have

yTh(x) > 0. (3.11)

But as x is feasible for (MFP) and y ∈ C2, we get that

yTh(x) ≤ 0,
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which contradicts (3.11). Hence x is a weakly efficient solution of (MFP).

Assume that (b) holds. Using Remark 2.14(2), we have that

(
f(· ) + (· )Tw

g(· )

)
is

pseudo α-univex at x with respect to α, b, ϕ and η where bi(x, x) =
gi(x)

gi(x)
bi(x, x) >

0. Also as a < 0 ⇒ ϕ(a) < 0, (3.7) gives

bi(x, x)ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
< 0, ∀ i = 1, 2, . . . , k. (3.12)

Now

(
f(· ) + (· )Tw

g(· )

)
being pseudo α-univex at x, (3.12) implies⟨

α(x, x)▽
(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
< 0, ∀ i = 1, 2, . . . , k.

Since λ ≥ 0, therefore multiplying each of the above inequalities by λi and
summing over i = 1, 2, . . . , k, we get⟨

α(x, x) λ
T ▽

(
f(x) + xTw

g(x)

)
, η(x, x)

⟩
< 0. (3.13)

As (3.4) holds for all x ∈ Rn, we have

λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x) = 0. (3.14)

Because x is feasible for (MFP) and y ∈ C2, we get that

yTh(x) ≤ 0.

Using (b), (3.5) and above inequality, we obtain

b0(x, x) ϕ0(y
Th(x)− yTh(x)) ≤ 0.

As yTh(· ) is quasi α-univex at x, we obtain from above inequality that⟨
α(x, x) ▽ yTh(x) , η(x, x)

⟩
≤ 0. (3.15)

Adding (3.13) and (3.15), we get that⟨
α(x, x)

(
λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)
, η(x, x)

⟩
< 0,

which contradicts (3.14). Hence x is a weakly efficient solution of (MFP). �

Theorem 3.3. Let x be a feasible solution of (MFP) and that there exist λ ∈
Rk, λ > 0, w = (w1, w2, . . . , wk) ∈ D1 ×D2 × . . .×Dk and y ∈ C2 such that the
conditions (3.4) - (3.6) hold. Assume that all the conditions of Lemma 2.13 are
satisfied at x and w with bi(x, x) > 0 for all i = 1, 2, . . . , k and a < 0 ⇒ ϕ(a) < 0.
Also assume that yTh(· ) is α-univex at x with respect to α, b0, ϕ0 and η with
b0(x, x) > 0 and ϕ0(a) > 0 ⇒ a > 0. Then x is an efficient solution of (MFP).
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Proof. Suppose that x is not an efficient solution of (MFP). Then there exists
some x ∈ X0 such that

fi(x) + s(x|Di)

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
, ∀i = 1, 2, . . . , k, i ̸= j

and
fj(x) + s(x|Dj)

gj(x)
<

fj(x) + s(x|Dj)

gj(x)
.

Using (3.6) and the fact that s(x|Di) ≥ xTwi, i = 1, 2, . . . , k, we have for all
i = 1, 2, . . . , k, i ̸= j that

fi(x) + xTwi

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
=

fi(x) + xTwi

gi(x)

and

fj(x) + xTwj

gj(x)
≤ fj(x) + s(x|Dj)

gj(x)
<

fj(x) + s(x|Dj)

gj(x)
=

fj(x) + xTwj

gj(x)
.

That is,

fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)
≤ 0, ∀i = 1, 2, . . . , k, i ̸= j (3.16)

and
fj(x) + xTwj

gj(x)
− fj(x) + xTwj

gj(x)
< 0. (3.17)

Since f(· ) + (· )Tw and −g(· ) are α-univex at x with respect to α, b, ϕ and η,

therefore by Lemma 2.13,

(
f(· ) + (· )Tw

g(· )

)
is α-univex at x with respect to

α, b, ϕ and η where bi(x, x) =
gi(x)

gi(x)
bi(x, x) > 0 for all i = 1, 2, . . . , k. Using the

assumption that a < 0 ⇒ ϕ(a) < 0 where ϕ is linear, (3.16) and (3.17) give

bi(x, x) ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
≤ 0, ∀i = 1, 2, . . . , k, i ̸= j

and bj(x, x) ϕ

(
fj(x) + xTwj

gj(x)
− fj(x) + xTwj

gj(x)

)
< 0.

Using α-univexity of

(
f(· ) + (· )Tw

g(· )

)
in last two inequalities, we get⟨

α(x, x)▽
(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
≤ 0, ∀ i = 1, 2, . . . , k, i ̸= j

and

⟨
α(x, x)▽

(
fj(x) + xTwj

gj(x)

)
, η(x, x)

⟩
< 0.
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Since λ > 0, therefore multiplying each of the above inequalities by λi and
summing over i = 1, 2, . . . , k, we get⟨

α(x, x) λ
T ▽

(
f(x) + xTw

g(x)

)
, η(x, x)

⟩
< 0.

Rest of the proof follows on the lines of proof of part (a) of Theorem 3.2. �

Theorem 3.4. Let x be a feasible solution of (MFP) and that there exist λ ∈
Rk, λ ≥ 0, w = (w1, w2, . . . , wk) ∈ D1 × D2 × . . . × Dk and y ∈ C2 such that
the conditions (3.4) - (3.6) hold. Assume that all the conditions of Lemma 2.13

are satisfied at x and w with f(· ) + (· )Tw being strict α-univex at x. Further
assume that yTh(· ) is quasi α-univex at x with respect to α, b0, ϕ0 and η. Also
let a ≤ 0 ⇒ ϕ(a) ≤ 0 and a ≤ 0 ⇒ ϕ0(a) ≤ 0. Then x is an efficient solution of
(MFP).

Proof. Suppose that x is not an efficient solution of (MFP). Then there exists
some x ∈ X0 such that

fi(x) + s(x|Di)

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
, ∀i = 1, 2, . . . , k, i ̸= j

and
fj(x) + s(x|Dj)

gj(x)
<

fj(x) + s(x|Dj)

gj(x)
.

Using (3.6) and the fact that s(x|Di) ≥ xTwi, i = 1, 2, . . . , k, we have for all
i = 1, 2, . . . , k, i ̸= j that

fi(x) + xTwi

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
≤ fi(x) + s(x|Di)

gi(x)
=

fi(x) + xTwi

gi(x)

and

fj(x) + xTwj

gj(x)
≤ fj(x) + s(x|Dj)

gj(x)
<

fj(x) + s(x|Dj)

gj(x)
=

fj(x) + xTwj

gj(x)
.

That is,

fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)
≤ 0, ∀i = 1, 2, . . . , k, i ̸= j (3.18)

and
fj(x) + xTwj

gj(x)
− fj(x) + xTwj

gj(x)
< 0. (3.19)

Since f(· ) + (· )Tw is strict α-univex and −g(· ) is α-univex at x with respect

to α, b, ϕ and η, therefore by Remark 2.14(3),

(
f(· ) + (· )Tw

g(· )

)
is strict pseudo

α-univex at x with respect to α, b, ϕ and η where bi(x, x) =
gi(x)

gi(x)
bi(x, x) ≥ 0
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for all i = 1, 2, . . . , k. Thus by using the assumption that a ≤ 0 ⇒ ϕ(a) ≤ 0,
(3.18) and (3.19) give

bi(x, x) ϕ

(
fi(x) + xTwi

gi(x)
− fi(x) + xTwi

gi(x)

)
≤ 0, ∀i = 1, 2, . . . , k. (3.20)

Using the definition of strict pseudo α-univexity of

(
f(· ) + (· )Tw

g(· )

)
, (3.20) im-

plies ⟨
α(x, x)▽

(
fi(x) + xTwi

gi(x)

)
, η(x, x)

⟩
< 0, ∀ i = 1, 2, . . . , k.

Since λ ≥ 0, therefore multiplying each of the above inequalities by λi and
summing over i = 1, 2, . . . , k, we get⟨

α(x, x) λ
T ▽

(
f(x) + xTw

g(x)

)
, η(x, x)

⟩
< 0.

Rest of the proof follows on the lines of proof of part (b) of Theorem 3.2. �

4. Duality

Now we consider the following Mond-Weir type dual of (MFP).

(MFD) Maximize

(
f(u) + uTw

g(u)

)
subject to

−
(
λT ▽

(
f(u) + uTw

g(u)

)
+▽yTh(u)

)
∈ C∗

1 , (4.1)

yTh(u)− uT

(
λT ▽

(
f(u) + uTw

g(u)

)
+▽yTh(u)

)
≥ 0, (4.2)

y ∈ C2, λ ∈ Rk, λ ≥ 0, w = (w1, . . . , wk) ∈ D1 × . . .×Dk, (4.3)

where wi (i = 1, 2, . . . , k) is a vector in Rn and uTw = (uTw1, . . . , u
Twk).

Theorem 4.1. (Weak Duality) Let x be feasible for (MFP) and (u, y, λ, w) be
feasible for (MFD). Assume that

(a) f(· ) + (· )Tw and −g(· ) are α-univex at u with respect to α, b, ϕ, η with
ϕ linear and yTh(· )+vT (· ) is α-univex at u with respect to α, b0, ϕ0 and
η for all v ∈ C∗

1 ,
(b) a ≤ 0 ⇒ ϕ0(a) ≤ 0, a < 0 ⇒ ϕ(a) < 0 and bi(x, u) > 0 for all

i = 1, 2, . . . , k,

then F (x) ≮
f(u) + uTw

g(u)
.
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Proof. Let us suppose on the contrary that

F (x) <
f(u) + uTw

g(u)
,

that is,

fi(x) + s(x|Di)

gi(x)
<

fi(u) + uTwi

gi(u)
, ∀i = 1, 2, . . . , k.

Using the fact that s(x|Di) ≥ xTwi for all i = 1, 2, . . . , k, we get that

fi(x) + xTwi

gi(x)
<

fi(u) + uTwi

gi(u)
, ∀ i = 1, 2, . . . , k

⇒ fi(x) + xTwi

gi(x)
− fi(u) + uTwi

gi(u)
< 0, ∀ i = 1, 2, . . . , k. (4.4)

By (a) as f(· ) + (· )Tw and −g(· ) are α-univex at u with respect to α, b, ϕ and

η, therefore by Lemma 2.13,

(
f(· ) + (· )Tw

g(· )

)
is α-univex at u with respect to

α, b, ϕ and η where bi(x, u) =
gi(x)

gi(u)
bi(x, u) > 0 for all i = 1, 2, . . . , k. Thus by

using the assumption that a < 0 ⇒ ϕ(a) < 0, (4.4) gives

bi(x, u) ϕ

(
fi(x) + xTwi

gi(x)
− fi(u) + uTwi

gi(u)

)
< 0, ∀ i = 1, 2, . . . , k.

Now as

(
f(· ) + (· )Tw

g(· )

)
is α - univex at u, we get⟨

α(x, u)▽
(
fi(u) + uTwi

gi(u)

)
, η(x, u)

⟩
< 0, ∀ i = 1, 2, . . . , k.

Since λ ≥ 0 by (4.3), therefore multiplying above inequality for each i =
1, 2, . . . , k by λi and summing over i = 1, 2, . . . , k, we get that⟨

α(x, u) λT ▽
(
f(u) + uTw

g(u)

)
, η(x, u)

⟩
< 0. (4.5)

From the dual constraint (4.1), we have

−
(
λT ▽

(
f(u) + uTw

g(u)

)
+▽yTh(u)

)
∈ C∗

1 ,

therefore there exist v ∈ C∗
1 such that

v = −
(
λT ▽

(
f(u) + uTw

g(u)

)
+▽yTh(u)

)
. (4.6)

On using (4.6) in (4.2), we obtain

yTh(u) + vTu ≥ 0. (4.7)
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Since x is feasible for (MFP), y ∈ C2 and v ∈ C∗
1 , we have

yTh(x) + vTx ≤ 0, (4.8)

therefore (4.7) and (4.8) together give

yTh(u) + vTu ≥ yTh(x) + vTx

⇒ yTh(x) + vTx− yTh(u)− vTu ≤ 0.

From assumption (b) as a ≤ 0 ⇒ ϕ0(a) ≤ 0 and b0(x, u) ≥ 0, therefore

b0(x, u) ϕ0

(
yTh(x) + vTx− yTh(u)− vTu

)
≤ 0.

Since yTh(· ) + vT (· ) is α-univex at u with respect to α, b0, ϕ0 and η, therefore
the above inequality gives

< α(x, u) (▽yTh(u) + v) , η(x, u) > ≤ 0,

which on using (4.6) reduces to

< α(x, u) λT ▽
(
f(u) + uTw

g(u)

)
, η(x, u) > ≥ 0.

This contradicts (4.5). Hence,

F (x) ≮
f(u) + uTw

g(u)
.

�

Theorem 4.2. (Strong Duality) Let x be a weakly efficient solution of (MFP)
at which a suitable constraint qualification [14] be satisfied. Then there exist
λ ∈ Rk, λ ≥ 0, y ∈ C2 and w = (w1, w2, . . . , wk) ∈ D1 × D2 × . . . × Dk such
that (x, y, λ, w) is feasible for (MFD) and the objective function values of (MFP)
and (MFD) are equal. Furthermore, if the assumptions of weak duality Theorem
4.1 hold for all the feasible solutions of (MFP) and (MFD), then (x, y, λ, w) is
weakly efficient for (MFD).

Proof. Since x is a weakly efficient solution of (MFP), therefore there exist λ ∈
Rk, λ ≥ 0, y ∈ C2 and w = (w1, w2, . . . , wk) ∈ D1 × D2 × . . . × Dk such that
(3.1),(3.2) and (3.3) hold. Since x ∈ C1 and C1 is a closed convex cone, therefore
for any x ∈ C1, we have x+ x ∈ C1. Thus replacing x by x+ x in (3.1), we get(

λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)T

x ≥ 0, ∀ x ∈ C1.

That is,

−
(
λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)
∈ C∗

1 . (4.9)

Also by letting x = 0 and x = 2x in (3.1), we get(
λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)T

x = 0. (4.10)
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Therefore by using (3.2) and (4.10), we have that

yTh(x)− xT

(
λ
T ▽

(
f(x) + xTw

g(x)

)
+▽yTh(x)

)
= 0. (4.11)

Thus (4.9) and (4.11) imply that (x, y, λ, w) is feasible for (MFD) and the
objective function values of (MFP) and (MFD) are equal. Since the assumptions
of weak duality hold for all the feasible solutions of (MFP) and (MFD), we get
that (x, y, λ, w) is a weakly efficient solution of (MFD). �

5. Conclusion

This paper generalizes the concept of α-univexity for a real valued function
by defining the concept of α-univexity, pseudo α-univexity and quasi α-univexity
for a vector valued function. Examples have been included to show the existence
of these functions. Sufficient optimality criteria have been obtained for (MFP)
by using the above defined classes of (generalized) α-univex functions. Assuming
the functions to be α-univex duality is established between (MFP) and its Mond-
Weir type dual (MFD).
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