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MULTIOBJECTIVE FRACTIONAL PROGRAMMING
WITH A MODIFIED OBJECTIVE FUNCTION

Do Sang Kim

ABSTRACT. We consider multiobjective fractional programming prob-
lems with generalized invexity. An equivalent multiobjective pro-
gramming problem is formulated by using a modification of the
objective function due to Antczak. We give relations between a
multiobjective fractional programming problem and an equivalent
multiobjective fractional problem which has a modifed objective
function. And we present modified vector saddle point theorems.

1. Introduction

Khan and Hanson[7] have used the ratio invexity concept to charac-
terize optimality and duality results in fractional programming. This
concept seems to be new and it introduces a modified kind of charac-
terization in sufficient optimality conditions. The optimality conditions
of Karush-Kuhn-Tucker type for a multiobjective programming prob-
lem and the saddle points of its vector-valued Lagrangian function have
been studied by many authors ([2, 3, 4, 5, 6, 8 9, 10, 11]). But in
most of these, an assumption of convexity on the functions involving
was made. The aim of this paper is to show how one can obtain op-
timality conditions for Pareto optimality by constructing an equivalent
multiobjective programming problem for a multiobjective fractional pro-
gramming problem with generalized invexity. The equivalent multiob-
jective programming problem is obtained by a modification of the ob-
jective function due to Antczak[l]. Furthermore, a Lagrangian function
is introduced for a constructed multiobjective fractional programming
problem and modified vector saddle point results are presented.
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2. Preliminaries

Throughout this paper, we will use the following conventions for vec-
tors in R™:

<y, <y, t=1,2,---,m;
I§y<:>x2§yza 7’:172’7”7
rlyerSy bt zfy i=1,2---,m

z &£ y is the negation of x < 3.
We consider the following multiobjective programming problem (M P)

(MP) Minimize f(z)
subject to g(z) £ 0,

where f = (f1,--,fx) : X = RF and g = (g1, - ,gm) : X — R™ are
differentiable functions on a nonempty open set X C R".

Consider the following multiobjective fractional programming prob-
lem (MFP):

(MFP) Minimize (ﬁ@ - M)
9(z) 9(z)
subject to h;j(z) £0, j=1,---,m,

where f;, g and h; are continuously differentiable over X C R". Let
S={zre X :hj(x) £0, j=1,---,m} denote the set of all feasible
solutions and I(z) = {i : h;(z) = 0} for any x € X. We assume that
f(xz) 2 0for all z € X and g(x) > 0 for all x € X whenever g is not
linear.

Optimization of (M P) is finding (weakly) efficient solutions defined
as follows;

DEFINITION 2.1. (1) A point Z € S is said to be an efficient solution
for (M F' P) if there exists no other feasible point z € S such that f(z) <
1(@).

(2) A point Z € S is said to be a weakly efficient solution for (M FP)
if there exists no other feasible point z € S such that f(z) < f(Z).

Now we define the concepts of invexity for vector-valued function.
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DEFINITION 2.2. Let f : X — R* be a differentiable function on a
nonempty open set X C R"™.

(1) f is said to be invex with respect to n at u € X if, for all z € X,
there exists 77 : X x X — R™ such that for all i = 1,2,--- |k,

fi(z) = fi(u) 2 V fi(u)n(z, u).

(2) f is said to be strictly invex with respect to n at u € X if, for
all z € X with x # u, there exists 7 : X x X — R"™ such that for all
1= 1527"' 7k7

fi(x) = filu) >V filu)n(z, u).

LEMMA 2.3.  If real valued functions f(z) and —g(z) are invex with
respect to the same n(x,y), then f(z)/g(z) is an invex function with
respect to 7(z,y) = (9(y)/9(z))n(z,y).

PROOF. Let z,y € X. Since f(z) and —g(x) are invex with respect
to the same n(z,y), then we have

fl@) fly) _ fl@) - fly)  flgz) —9(y))
9(z)  g(y) g9(z) 9(x)9(y)
9w (Vi) _fWVIW)
2 00 G- T e
_IW G (fWN,
=407 (o) e
Therefore, % is an invex function with respect to 7j(z,y) = (g(—g;>
n(z, y). 0

3. Optimality conditions

In this section, we give Fritz John necessary conditions and Karush-
Kuhn-Tucker necessary condition and establish sufficient conditions for
efficient and weakly efficient solutions of (M F P).

Necessary optimality conditions a Karush-Kuhn-Tucker type for the
multiobjective problems were obtained, for example, by Kanniappan(6],
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Weir[11]. Therefore, we are using the following necessary optimality con-
ditions of Karush-Kuhn-Tucker type under some constraint qualification
(CQ) (for example, Linear Independence)

The following Theorem 3.1, 3.2 and 3.3 are necessary conditions for
a (weakly) efficient solution.

THEOREM 3.1 (FRITZ JOHN NECESSARY CONDITIONS). Ifz € Sisa
(weakly) efficient solution of (M FP), then there exists A\;,i = 1,--- ,k
and p;,j =1,--+ ,m, such that

Z,\v ;o) +Z Vh;(z) =0
Zl‘g (z) =0,

()‘17"' ?Ak:)ulf" aﬂm) ZO

THEOREM 3.2 (KARUSH-KUHN-TUCKER NECESSARY CONDITIONS).
Assume that there exists z* € X such that (Vh;(Z),z*) >0, j € I(Z).
If £ € S is a weakly efficient solution of (M FP), then there exists
Ai20,i=1,--- kand,uj 20,7=1,---,m, such that

Vh;(z) =0,

Z,Ujhj(j) =
j=1
(/\17"' 7>‘k'7/1‘1)"' Hu'm) 207 ()‘1,"' a)‘k) # (07 ’0)

THEOREM 3.3 (KARUSH-KUHN-TUCKER NECESSARY CONDITIONS).
Assume that Vh;(Z), j € I(Z) are linearly independent. If £ € S is an
efficient solution of (M FP), then there exists \; 20, ¢ =1,---  k and
p; 20,5=1,--- ,m, such that

Z Mth (3_7) =
j=1

(/\la"' ?)‘knula"' 7Mm) ;O, ()‘17"' 7/\’6) 7& (01 ’0)
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The following Theorem 3.4 is sufficient conditions for a weakly effi-
cient solution.

THEOREM 3.4 (KARUSH-KUHN-TUCKER SUFFICIENT CONDITIONS).
Let (Z, A, i) satisfy the Karush-Kuhn-Tucker conditions as follows:

o fi®) | <
Z NV gz ) + Z /“Lthj (z) =0,
=1 =1

(z
> uh;(®) =0,
j=1
()‘17"' :Akvﬂlv"' )Mm) ;03 (>\17"' 7>‘k) 7é (Oa ,0)
If (fi,---,fx) and —g are invex with respect to the same n and if

(h1, -+ ,hsy) is invex with respect to 7], then T is a weakly efficient
solution of (M F'P).

PROOF. Suppose 7 is not a weakly efficient solution of (MFP). Then,

for x € S,
filz) f@ i1k
g(x) = ¢(z)
Since f;, i =1,--- ,k, and —g are invex with respect to the same 7, by
Lemma 2.3,
9(2) ¢ fi(z) _
=LV — x,Z) < 0.
FEMEEIGR

From ()\1,"' ,)\k) 2 0,

i)\iV(%>ﬁ(m,:ﬁ) <0,

Using Karush-Kuhn-Tucker conditions,

m

(1) > 1 Vh()7(, 2) > 0,
j=1

Since (hy,- - , hy) is invex with respect to 7,

> pihi(x) - Z pih;(z) 2 Z 1 Vh;(@)n(z, T).

=1
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Then
ZMJVh (z,Z) < 0.

This inequality contradicts (1). Hence Z is a weakly efficient solution of
(MFP). O

REMARK. If we replace the invexity hypothesis on one of f and —g by
strictly invexity in Theorem 3.4 or if we replace the invexity hypothesis
of h by strictly invexity in Theorem 3.4, then Theorem 3.4 holds in the
sense of an efficient solution.

4. An equivalent multiobjective fractional problem

Let Z be a feasible solution of (M FP). We consider the following
multiobjective fractional program (M F P;(Z)) given by

(M F P5(z)) Minimize (n (x,Z)V ];((;:)) . ,ﬁT(x,f)VJZC((;)))
subject to h;(z) £0, j=1,---,m,

where 7(z,z) = §w;n(x Z). Let S = {z € X : hj(z) £0, j =
1,--- ,m} denote the set of all feasible solutions and I(x) = {3 : h;(x) =
0} for any z € X.

THEOREM 4.1. Let T be (weakly) efficient in (M FP) and assume
that (there exists z* € X such that (Vh;(Z),z*) >0, j € I(z)) Vh;(Z),
j € I(Z) are linearly independent. Futher, we assume that h is strictly
invex with respect to 7} at T on S and n(Z,Z) = 0. Then Z is (weakly)
efficient in (M F Py(Z)).

PROOF. Since z is efficient in (MFP) and Vh;(z), j € I(Z) are
linearly independent, Karush-Kuhn-Tucker conditions are satisfied. As-
sume that T is not efficient for (M FP;(z)). This implies that there
exists £ which is feasible for (M F P;(Z)) such that

- h@ k(@)
(”( Vo 1EAV (x>)

H(@) Jx(Z)
9(z)’ 9(z)

-+, (Z,Z)V

< (n(a‘c F)V it ) =(0,---,0).
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Since A > 0,

(2)

1(2,2) < 0.

Since & is feasible and p 2 0, ,uTh (2) £ 0. Hence it follows that
pTh(2) £ uTh(z). By assumption, that is, h is strictly invex with
respect to 7 at T,

(3) p" Vh(Z)7(%,2) < 0.

By (2) and (3), we obtain

7 (&, ) Z/\V +pTVh(§:) < 0.

This inequality contradicts Z 1 A V];“((g + uF'Vh(Z) = 0. Hence

is efficient in (M FP;(Z)). In the snmlar method, we prove that z is
weakly efficient in (M FP5(Z)). O

THEOREM 4.2. Let Z be a feasible point for (M F P;(Z)). Further,
we assume that f and —g are invex with respect ton at Z and n(Z, Z) = 0.
If 7 is efficient in (M F P;(Z)), then T is also efficient in (MFP).

ProOOF. Since f and —g are invex with respect to n, %, for all
i=1,---,k, is invex with respect to  and 7(Z, ) = 0, where 7(z,Z) =
‘g Ez;fr)(a:, Z). Assume that 7 is not efficient in (M F'P). Then there exists
& feasible for (M F P) such that

(565 50) = (650

Since fl ,i=1,---,k, is invex with respect to 7j at Z and n(z,%) = 0,
we have h) @
A 1\Z Al F kX
<77($a$)v g(a’:) s 7"7( ,x)V g(f) )
. (fl(:ff) _h@ i) fk@)
—\g@) 9@ 9(&)  9(@)
S (05 70)

which contradicts that Z is efficient in (M FP;5(Z)) O
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5. Saddle point criteria

Now we introduce a definition of an 7j-Lagrange function for a multi-
objective fractional programming problem (M FP;(Z)).

DEFINITION 5.1. An f-Lagrange function is said to be a Lagrange
function for a multiobjective fractional programming problem (M F P;(%))

Lyto) = (P @ov 28 L ih), i @9 D 4 ) ).

Here, we give a new definition of a weak vector saddle point for the
introduced 7-Lagrange function in a multiobjective fractional program-
ming problem (M F P;(z)).

DEFINITION 5.2. A point (Z, i) € S x RT" is said to be a weak vector
saddle point for the 7-Lagrange function if

(i) Lq(Z, u) # Ly(Z, i), VYpu € RY,

(i) Lg(z, ) £ Ly(Z, ), Yz €S.

THEOREM 5.3. We assume that f;, i = 1,--- ,k, and g are invex
with respect to n at £ with n(Z,Z) = 0 and some (CQ) holds at % for

(MFP). If (%, i) is a weak vector saddle point for L;, then T is a weakly
efficient solution in (M FP).

PROOF. Assume that (Z,z) is a saddle point for L. Then by (i)
of Definition 5.2, we have L;(Z,u) # Lz(Z, ). Since n(z,z) = 0, we
obtain

(4) W"h(&) < BTh(z), Vu € RT.

Suppose that Z is not a weakly efficient solution in (M FP). Then
there exists £ € S such that for all i =1,2,--- |k,

®) 0@ 9@

Since Z € S and i € R, 5Th(z) 0. In (4), let =0

a" h(Z)

v

0.
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Hence
(6) i h(z) = 0.

Since f’ ,t=1,---  k is invex with respect to 7, then from (5),
(7) a@nvi@ <

9(z)
Thus, by (6) and (7) and using the definition of Ly, we get

@ = (76, 0v 2 L aTh@), e v 4 aThs
Lot = (06,009 20 4 @), - e 09 2D 4 o)

D) 4 iTh(z), - 7, f)v% T p%(z))

This contradicts (ii) of Definition 5.2. Hence Z is a weakly efficient
solution in (M F'P). O

THEOREM 5.4. Let Z be a weakly efficient solution in (M F P) at
which (CQ) is satisfied. Further, we assume that h is invex with respect
ton at T and n(Z,T) = 0. Then there exists i € R’ such that (Z,[1) is a
weak vector saddle point for the 7j-Lagrange function in a multiobjective
fractional programming problem (M F P5(Z)).

PROOF. Since 7 is a weakly efficient solution for (M F P), by Theorem
3.2, Karush-Kuhn-Tucker conditions hold. Assume Zle X; = 1. Since h
is invex with respect to 7j at Z and i € R, it follows that the inequality

A" h(z) — aTh(z) 2 5T Vh(z)i(z, T)

holds for all z € S. Then from Karush-Kunh-Tucker condtion,

k
AT h(z) — (@) = ~ ZXTVfl(x)ﬁ( 3).

(Z)
By assumption n(z, ) = 0, the inequality
e fi@ 4T u f:_ L T
;Aivg(j) ii(z, @ h(z z; ey 7(z, %) + aLh(z)
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holds for all € S. Since A >0, >.¥_ X, = 1 and by the definition of
the 7-Lagrange function, it follows that, for all z € §

(8) AT Ly(x, i) 2 AT Lp(%, ).

_ Assume that Ly(z, i) < L(Z, i) for all z € S. Then AT Ly(x, i) <
M L;(%, ii). This contradicts (8). Hence

9) Ly(z,p) £ Ly(z, ), forall z €S,
Since z € S, the inequality
uTh(z) £ 5T h(E)

holds for all u € R*. Thus we obtain

__ o f1(Z) Th(Z). - (3 7 fx(Z) Th(5
(70292 4 ithia), i, v 2D 4 i) )
p— ()] ZThE). - 7(%. % fe(Z) 2T (%
< (Feavi@ i, 1@ v 1 i)
and
(10) ;‘TLV"I(EHU) § }.‘TLﬁ(j7ﬁ)

for all p € RT.

Assume that Ly(Z, i) < Ly(Z, p) for all p € RT. Then AT Ly(Z, i) <
S‘TLF? ("f ’ :u')‘

This contradicts (10). Hence

(11) Ly(Z, i) £ Ly(Z, 1), for all p € RY.
Inequalities (9) and (11) mean that (Z, i) is a weak vector saddle point

for the f-Lagrange function in a multiobjective fractional programming
problem (M F P5(Z)). O
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