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ABSTRACT. In this paper, we introduce generalized multiobjective fractional programming
problem with two kinds of inequality constraints. Kuhn-Tucker sufficient and necessary op-
timality conditions are given. We formulate a generalized multiobjective dual problem and
establish weak and strong duality theorems for an efficient solution under generalized convex-
ity conditions.

1. INTRODUCTION AND PRELIMINARIES

Multiobjective fractional programming problems arise when more than one ratio objective
function is to be optimized over a given feasible region. Efficiency or Pareto optimum is the
optimality concept that appears to be the natural extension of the optimization of a single
objective to the consideration of multiple objectives.

Recently, there has been an increasing interest in developing programming problems.
In 1961, Wolfe [15] studied the duality theorem of convex programming. Afterward, a

number of different duals distinct from the Wolfe dual are proposed for the nonlinear programs
by Mond and Weir [11]. Duality relations for objective fractional programming problems with
a (generalized) convexity condition, were given by many authors [1, 3, 5, 8, 10, 12, 13, 14].

In 1992, Jeyakumar and Mond [6] introducted V-invexity. After Khan and Hanson [7] es-
tablished duality theorem for single objective fractional programming problem by using ratio
invexity condition, Craven and Mond [3] obtained more generalized duality results by using
invexity and V-invexity due to Jeyakumar and Mond [6].

This thesis has two aims. One is an extension of the results in Craven and Mond [3] for
two inequality constraint conditions from the single objective to multiobjective cases. And the
other is to formulate a generalized multiobjective fractional dual problem.

This paper is organized as follows. In section 1, we introduce generalized multiobjective
fractional problems under the concept of efficient solution needed in the proof of a strong
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duality relation. In section 2, we establish Kuhn-Tucker sufficient conditions for generalized
multiobjective fractional problem. In section 3, we prove weak and strong duality theorems for
multiobjective fractional dual problem due to Craven and Mond [3] and generalized multiob-
jective fractional problem under generalized convexity.

We consider the folllowing generalized multiobjective fractional programming problem:

(MFP) Minimize q(x) = (
f1(x)
g1(x)

, · · · fp(x)
gp(x)

)

subject to hj(x) ≤ 0, kj(x) ≤ 0, j = 1, 2, · · · ,m x ∈ X,

where X is an open set of Rn, f := (f1, · · · , fp) : X → Rp, g := (g1, · · · , gp) : X → Rp, h :
(h1, · · · , hm) : X → Rm and k := (k1, · · · , km) : X → Rm are continuously differentiable
over X . Let S = {x ∈ X : hj(x) ≤ 0, kj(x) ≤ 0, j = 1, 2, · · · , m}. We assume that
f(x) ≥ 0 for all x ∈ X and g(x) > 0 for all x ∈ X.

The following convention for inequalities will be used in this paper. If x, u ∈ Rn, then
x ≤ u iff u − x ∈ Rn

+, x ≤e u iff u − x ∈ Rn
+ \ {0}, x < u iff u − x ∈ intRn

+, and
x �e u is the negation of x ≤ u . For x, u ∈ R, x ≤ u and x < u have the usual meaning.

Definition 1.1. A feasible solution x̄ for (MFP) is a efficient solution for (MFP) if q(x) �e

q(x̄) for all x ∈ T .

Definition 1.2. A function F : Rn → R is said to be sublinear if F (α1+α2) ≤ F (α1)+F (α2)
for any α1, α2 ∈ Rn and F (rα) = rF (α) for any r ∈ R+, α ∈ Rn.

Definition 1.3. Given an open set X ⊂ Rn, a number ρ ∈ R, and two functions α : X×X →
R+ \ {0} and d : X × X → R, a differentiable function f over X is said to be (F, α, ρ, d)-
convex at x ∈ X if for any x ∈ X, F (x, x; ·) : Rn → R is sublinear, and f(x) satisfies the
following condition:

f(x)− f(x) ≥ F (x, x : α(x, x)∇f(x)) + ρd2(x, x).

If ρ = 0 or d(x, x0) = 0 for all x, x0 ∈ X and F (x, x0; α(x, x0)∇f(x0)) = ∇f(x0)T η(x, x0)
for a certain mapping η : X ×X → Rn, then (F, α, ρ, d)-convexity reduces to invexity.

In the proof of a strong duality relation, we will use the following lemma due to Chankong and
Haimes[2].

Lemma 1.1. x is an efficient solution for (MFP) if and only if for all i = 1, 2, · · · , p, x
solves (Pi)

(Pi) Minimize
fi(x)
gi(x)

subject to x ∈ Xi,

where Xi = {x ∈ Rn|fj(x)
gj(x) ≤

fj(x)
gj(x) for all j 6= i, hj(x) ≤ 0, kj(x) ≤ 0}.
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2. OPTIMALITY CONDITIONS

Now, we establish the Kuhn-Tucker type sufficient and necessary optimality theorem for
(MFP).

Lemma 2.1. Let X ⊂ Rn be an open set. Assume that p, q and r are real-valued differentiable
functions defined on X and p(x) + r(x) ≥ 0, q(x) > 0 for all x ∈ X. If p, r and −q are
(F, α, ρ, d)-convex at x ∈ X, then p+r

q is (F, α, ρ, d)-convex at x, where

α(x, x) = α(x,x)q(x)
q(x) , ρ = ρ

(
1 + p(x)+r(x)

q(x)

)
, and d(x, x) = d(x,x)

q
1
2 (x)

.

Proof. For any x ∈ X, we have
p(x)+r(x)

q(x) − p(x)+r(x)
q(x) = (p(x)+r(x))−(p(x)+r(x))

q(x) − (p(x)+r(x))(q(x)−q(x))
q(x)q(x) .

By the (F, α, ρ, d)-convexity of p, r and −q, and p + r ≥ 0, q > 0, we obtain
p(x)+r(x)

q(x) − p(x)+r(x)
q(x) ≥ 1

q(x)

(
F (x, x;α(x, x)∇(p(x) + r(x)) + ρd2(x, x)

)

+ (p(x)+r(x))
q(x)q(x)

(
F (x, x;−α(x, x)∇q(x)) + ρd2(x, x)

)
.

Based on the sublinearity of F and p + r ≥ 0, q > 0, the following inequalities can be
obtained:

p(x)+r(x)
q(x) − p(x)+r(x)

q(x) ≥ F
(
x, x; α(x,x)

q(x) ∇(p(x) + r(x))
)

+ ρd2(x,x)
q(x)

+F
(
x, x;−α(x,x)(p(x)+r(x))

q(x)q(x) ∇q(x)
)

+ ρd2(x,x)(p(x)+r(x))
q(x)q(x)

≥ F
(
x, x; α(x,x)

q(x) · q(x)∇(p(x)+r(x))−(p(x)+r(x))∇q(x)
q(x)

)
+ ρ

(
1 + p(x)+r(x)

q(x)

)
d2(x,x)

q(x)

= F
(
x, x; α(x,x)q(x)

q(x) ∇p(x)+r(x)
q(x)

)
+ ρ

(
1 + p(x)+r(x)

q(x)

)
d2(x,x)

q(x) .

Denote α(x, x) = α(x,x)q(x)
q(x) , ρ = ρ

(
1 + p(x)+r(x)

q(x)

)
, and d(x, x) = d(x,x)

q
1
2 (x)

. Then we have

p(x)+r(x)
q(x) − p(x)+r(x)

q(x) ≥ F
(
x, x; α(x, x)∇p(x)+r(x)

q(x)

)
+ ρd

2(x, x),∀x ∈ X.

Therefore, p+r
q is (F, α, ρ, d)-convex at x. ¤

Theorem 2.2. (Kuhn-Tucker Sufficient Conditions) Let x be a feasible solution of (MFP).
Suppose that there exist λ = (λ1, λ2, · · · , λp)T > 0, v = (v1, v2, · · · , vm)T ∈ Rm

+ and
w = (w1, w2, · · · , wm)T ∈ Rm

+ such that
p∑

i=1

λi∇fi(x) + vT h(x)
gi(x)

+
m∑

j=1

wj∇kj(x) = 0, (2.1)

vT h(x) = 0, wT k(x) = 0.

If fi, −gi, i = 1, 2, · · · , p, and vT h are (F, αi, ρi, di)-convex at x, kj for all j = 1, 2, · · · ,m
is (F, βj , ζj , cj)-convex at x, and

p∑

i=1

λiρi

d
2
i (x, x)

αi(x, x)
+

m∑

j=1

wjζj

c2
j (x, x)

βj(x, x)
≥ 0, (2.2)
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where αi(x, x) = αi(x,x)gi(x)
gi(x) , ρi = ρi(1+ fi(x)+vT h(x)

gi(x) ), and di(x, x) = di(x,x)

g
1
2
i (x)

, then x is an

efficient solution for (MFP).

Proof. Suppose that x is not a global efficient solution of (MFP). Then there exists a feasible
solution x such that f(x)

g(x) ≤e
f(x)
g(x) .

Since x is feasible for (MFP) and vT h(x) = 0,
f(x)+vT h(x)e

g(x) ≤e
f(x)+vT h(x)e

g(x) .

By Lemma 2.1, for each i, 1 ≤ i ≤ p, fi+vT h
gi

is (F, αi, ρi, di)-convex, i.e.,
fi(x)+vT h(x)

gi(x) − fi(x)+vT h(x)
gi(x) ≥ F

(
x, x; αi(x, x)∇fi(x)+vT h(x)

gi(x)

)
+ ρid

2
i (x, x),

where αi(x, x) = αi(x,x)gi(x)
gi(x) , ρi = ρi

(
1 + fi(x)+vT h(x)

gi(x)

)
, and di(x, x) = di(x,x)

g
1
2
i (x)

.

Since αi(x, x) > 0, by the sublinearity of F , we have
1

αi(x,x)

(
fi(x)+vT h(x)

gi(x) − fi(x)+vT h(x)
gi(x)

)
≥ F

(
x, x;∇fi(x)+vT h(x)

gi(x)

)
+ ρi

d
2
i (x,x)

αi(x,x) ,

where the left-hand side of the above inequality is less than or equal to zero.
Hence, we obtain the following inequalities,

F
(
x, x;∇fi(x)+vT h(x)

gi(x)

)
+ ρi

d
2
i (x,x)

αi(x,x) ≤ 0, i = 1, 2, · · · , p,

and at least one inequality holds strictly.
Multiplying the above inequalities with λi > 0, i = 1, 2, · · · , p, respectively, and then

adding them together, we have∑p
i=1 λiF

(
x, x;∇fi(x)+vT h(x)

gi(x)

)
+

∑p
i=1 λiρi

d
2
i (x,x)

αi(x,x) < 0.

By the sublinearity of F and λi > 0, i = 1, 2, · · · , p, we know that∑p
i=1 λiF

(
x, x;∇fi(x)+vT h(x)

gi(x)

)
≥ F

(
x, x;

∑p
i=1 λi∇fi(x)+vT h(x)

gi(x)

)
.

Hence, we get

F
(
x, x;

∑p
i=1 λi∇fi(x)+vT h(x)

gi(x)

)
+

∑p
i=1 λiρi

d
2
i (x,x)

αi(x,x) < 0.

Substituting (2.1) into above inequality, we obtain

F (x, x;−
m∑

j=1

wj∇hj(x)) +
p∑

i=1

λiρi

d
2
i (x, x)

αi(x, x)
< 0. (2.3)

The sublinearity of F and (2.2) yield

F (x, x;−∑m
j=1 wj∇kj(x)) +

∑p
i=1 λiρi

d
2
i (x,x)

αi(x,x) + F (x, x;
∑m

j=1 wj∇kj(x)) +
∑m

j=1 wjζj
c2j (x,x)

βj(x,x)

≥ ∑p
i=1 λiρi

d
2
i (x,x)

αi(x,x) +
∑m

j=1 wiζj
c2j (x,x)

βj(x,x) ≥ 0.

Using (2.3), we obtain

F (x, x;
m∑

j=1

wj∇kj(x)) +
m∑

j=1

wjζj

c2
j (x, x)

βj(x, x)
> 0. (2.4)



SHORT TITLE: DUALITY AND SUFFICIENCY IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING 105

On the other hand, for j = 1, 2, · · · , m, by the (F, βj , ζj , cj)-convexity of kj , we have
kj(x)− kj(x) ≥ F (x, x; βj(x, x)∇kj(x)) + ζjc

2
j (x, x).

By using wj ≥ 0, βj(x, x) > 0 and the sublinearity of F , we have
∑m

j=1 wj
kj(x)−kj(x)

βj(x,x) ≥ F (x, x;
∑m

j=1 wj∇kj(x)) +
∑m

j=1 wjζj
c2j (x,x)

βj(x,x) .

Since x is feasible, w ∈ Rn
+, wT k(x) = 0 and βj(x, x0) > 0 implies that∑m

j=1 wj
kj(x)−kj(x)

βj(x,x) ≤ 0.

Then, we obtain

F (x, x;
m∑

j=1

wj∇hj(x)) +
m∑

j=1

wjζj

c2
j (x, x)

βj(x, x)
≤ 0,

which contradicts (2.4). Therefore, x is an efficient solution for (MFP). ¤

From Lemma 1.1, we have the following Kuhn-Tucker necessary optimality theorem for
(MFP).

Theorem 2.3. (Kuhn-Tucker Nesessary Conditions) Let x be an efficient solution for (MFP).
Assume that x satisfies a constraint qualification for (Pi), i = 1, 2, · · · , p. Then there exist
λ ≥ 0, v ∈ Rm and w ∈ Rm such that

p∑

i=1

λi∇fi(x) + vT h(x)
gi(x)

+
m∑

j=1

wj∇kj(x) = 0,

vT h(x) = 0, v ≥ 0, w ≥ 0.

3. DUALITY THEOREMS

We propose the following multiobjective fractional dual problem to the primal problem
(MFP):

(MFD) Maximize p(u, v) = (
f1(u) + vT h(u)

g1(u)
, · · · ,

fp(u) + vT h(u)
gp(u)

)

subject to ∇λT p(u, v) +∇wT k(u) = 0, (3.1)

v ≥ 0, w ≥ 0, wT k(u) = 0, λ = (λ1, · · · , λp)T > 0,

where p : X × Rm → Rp and e = (1, · · · , 1)T ∈ Rp.

Theorem 3.1. (Weak Duality) Assume that x is feasible for (MFP) and (u, v, λ, w) is
feasible for (MFD). If fi, −gi, i = 1, 2, · · · , p, and vT h are (F, αi, ρi, di)-convex at
u, kj , j = 1, 2, · · · ,m, is (F, βj , ζj , cj)-convex at u, and the inequality

p∑

i=1

λiρi

d
2
i (x, u)

αi(x, u)
+

m∑

j=1

wjζj

c2
j (x, u)

βj(x, u)
≥ 0 (3.2)
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holds, where αi(x, u) = αi(x,u)gi(u)
gi(u) , ρi = ρi(1 + fi(u)+vT h(u)

gi(u) ), and di(x, u) = di(x,u)

g
1
2
i (x)

, then

we have f(x)
g(x) �e

f(u)+vT h(u)e
g(u) .

Proof. Assume to the contrary that

f(x)
g(x)

≤e
f(u) + vT h(u)e

g(u)
. (3.3)

For each i, 1 ≤ i ≤ p, by the generalized convexity assumptions and Lemma 2.1, we have
fi(x)+vT h(x)

gi(x) − fi(u)+vT h(u)
gi(u) ≥ F

(
x, u; αi(x, u)∇fi(u)+vT h(u)

gi(u)

)
+ ρid

2
i (x, u),

where αi(x, u) = αi(x,u)gi(u)
gi(x) , ρi = ρi

(
1 + fi(u)+vT h(u)

gi(u)

)
and di(x, x) = di(x,u)

g
1
2
i (x)

. Using

λi > 0, αi(x, x) > 0 and the sublinearity of F , we get, for i = 1, 2, · · · , p,
λi

αi(x,u)

(
fi(x)+vT h(x)

gi(x) − fi(u)+vT h(u)
gi(u)

)
≥ λiF

(
x, u;∇fi(u)+vT h(u)

gi(u)

)
+ λiρi

d
2
i (x,u)

αi(x,u) .

Then, by (3.3) and vT h(x) ≤ 0, we obtain

λiF
(
x, u;∇fi(u)+vT h(u)

gi(u)

)
+ λiρi

d
2
i (x,u)

αi(x,u) ≤ 0, i = 1, 2, · · · , p,

and at least one of the above inequalities holds strictly.
After adding these inequalities together, we get∑p

i=1 λiF
(
x, u;∇fi(u)+vT h(u)

gi(u)

)
+

∑p
i=1 λiρi

d
2
i (x,u)

αi(x,u) < 0.

Hence, it follows from the sublinearity of F that

F
(
x, u;

p∑

i=1

λi∇fi(u) + vT h(u)
gi(u)

)
+

p∑

i=1

λiρi

d
2
i (x, u)

αi(x, u)
< 0. (3.4)

By the (F, βj , ζj , cj)-convexity of kj , j = 1, 2, · · · ,m, we have
kj(x)− kj(u) ≥ F (x, u; βj(x, u)∇kj(u)) + ζjc

2
j (x, u).

Using wj ≥ 0 and βj(x, x) > 0, we get

wj
kj(x)−kj(u)

βj(x,u) ≥ wjF (x, u;∇kj(u)) + wjζj
c2j (x,u)

βj(x,u) , j = 1, 2, · · · ,m.

Adding these inequalities together and since x is feasible of (MFP) and wT k(u) = 0, we
obtain ∑m

j=1 wjF (x, u;∇kj(u)) +
∑m

j=1 wjζj
c2j (x,u)

βj(x,u) ≤ 0.
Using the sublinearity of F again, we have

F (x, u;
m∑

j=1

wj∇kj(u)) +
m∑

j=1

wjζj

c2
j (x, u)

βj(x, u)
≤ 0. (3.5)
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Based on the sublinearity of F , (3.1), (3.4), and (3.5), the following contradiction occurs:

0 = F (x, u; 0) = F
(
x, u;

p∑

i=1

λi∇fi(u) + vT h(u)
gi(u)

+
m∑

j=1

wj∇kj(u)
)

≤ F
(
x, u;

p∑

i=1

λi∇fi(u) + vT h(u)
gi(u)

)
+ F

(
x, u;

m∑

j=1

wj∇kj(u)
)

< −
( p∑

i=1

λiρi

d
2
i (x, u)

αi(x, u)
+

m∑

j=1

wjζj

c2
j (x, u)

βj(x, u)

)
≤ 0.

Therefore, if follows that f(x)
g(x) �e

f(u)+vT h(u)e
g(u) . ¤

Theorem 3.2. (Strong Duality) Assume that x is an efficient solution of (MFP) and x satis-
fies a constraint qualification [9] for (Pi). Then there exist λ(∈ Rp) > 0, v ∈ Rm

+ , w ∈ Rm
+

such that (x, v, λ, w) is feasible for (MFD), and the objective function values of (MFP) and
(MFD) at the corresponding points are equal. If the assumptions about the generalized con-
vexity and the inequality (3.2) in weak duality are also satisfied, then (x, v, λ, w) is an efficient
solution of (MFD).

Proof. Since x is an efficient solution of (MFP), from Lemma 1.1, x solves (Pi), for all
i = 1, 2, · · · , p. Now from the necessary optimality theorem 2.3, there exist λ > 0, v ≥ 0 and
w ≥ 0 such that

centerline∇(λT f(x)+vT h(x)
g(x) ) +∇wT k(x) = 0 and wT k(x) = 0.

Thus, (x, v, λ, w) is a feasible solution of (MFD). Moreover, by Theorem 3.1, (x, v, λ, w)
is an efficient solution. ¤
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