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OPTIMALITY FOR MULTIOBJECTIVE

FRACTIONAL VARIATIONAL PROGRAMMING

Cheonglai Jo and Dosang Kim

Abstract. We consider a multiobjective fractional variational programming problem

(P) involving vector valued functions. By using the concept of proper e�ciency, a rela-

tionship between the primal problem and parametric multiobjective variational problem

is indicated.

1. Introduction and problems

Programs with several conicting objectives have been extensively studied in liter-

atures [1]-[11]. Introducing the concept of proper e�ciency of solutions, Geo�rion[5]

proved an equivalence between a multiobjective program with convex functions and a

related parametric objective program. Using this equivalence, optimality and duality

for multiobjective variational problems have been of much interest in recent years, and

contributions have been made to its development. Bector and Husain[2] formulated

a dual program for a multiobjective variational program having properly e�cient so-

lutions. Also, using parametric equivalence, Bector and Husain[1] formulated a dual

program for a multiobjective fractional program having continuously di�erentiable con-

vex functions. Further, Mishra and Mukherjee[6] considered the duality of multiob-

jective fractional variational problems by relating the primal problem to a parametric

multiobjective variational problem.

Motivated by the above results, in this paper we propose studying optimality for

multiobjective fractional variational problems having properly e�cient solutions.

We consider a multiobjective fractional variational programming problem (P) in-

volving vector valued functions.

Minimize

R b

a
f(t; x(t); _x(t))dtR b

a
g(t; x(t); _x(t))dt

(P)

=

"R b

a
f1(t; x(t); _x(t))dtR b

a
g1(t; x(t); _x(t))dt

; � � � ;

R b

a
fp(t; x(t); _x(t))dtR b

a
gp(t; x(t); _x(t))dt
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subject to

x(a) = �; x(b) = � (1)

hj(t; x(t); _x(t)) � 0; t 2 I; j = 1; 2; � � � ;m;

x 2 S; _x 2 C(I;Rn): (2)

We assume that gi(t; x(t); _x(t)) > 0 and f i(t; x(t); _x(t)) � 0 whenever gi(x) is not

linear for all i = 1; 2; � � � ; p:

To optimize (P) is to �nd properly e�cient solutions.

Geo�rion[5] introduced the de�nition of the properly e�cient solution in order to

eliminate the e�cient solutions causing unbounded trade-o�s between objective func-

tions.

Corresponding to (P), we consider the following parametric vector variational prob-

lem (Pv):

Minimize [

Z b

a

ff1(t; x(t); _x(t))� v1g
1(t; x(t); _x(t))gdt(Pv)

; � � � ;

Z b

a

ffp(t; x(t); _x(t))� vpg
p(t; x(t); _x(t)gdt ]

subject to

x(a) = �; x(b) = �; (1)

hj( t; x(t); _x(t) ) � 0; t 2 I; j = 1; 2; � � � ;m;

x 2 S; _x 2 C(I;Rn): (2)

In this paper, we prove that (P) and (Pv) have equivalent properly e�cient solutions.

We can obtain optimality and duality for (P) by using of this equivalent relation.

We give some de�nitions and results from [2] and [7], which are used subsequently

in our later results.

Let I = [a; b] be a real interval and f = (f1; � � � ; fp) : I � Rn
� Rn

! Rp;

g = (g1; � � � ; gp) : I � Rn
� Rn

! Rp and h = (h1; � � � ; hm) : I � Rn
� Rn

! Rm

be continuously di�erentiable functions. In order to consider f i(t; x(t); _x(t)); where

x : I ! Rn with derivative _x; denote the partial derivative of f i with respect to t; x

and _x respectively, by f it ; f
i
x and f i_x such that

f ix = (
@f i

@x1
;
@f i

@x2
; � � � ;

@f i

@xn
) ; f i_x = (

@f i

@ _x1
;
@f i

@ _x2
; � � � ;

@f i

@ _xn
):

Similary, we write the partial derivatives of the vector functions g and h using

matrices p� n and m� n, respectively.
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Let C(I;Rn) denote the space of piecewise smooth functions x with norm k x k=k

x k1 + k Dx k1; where the di�erentiation operator D is given by

u = Dx , x(t) = �+

Z t

�

u(s)ds;

where � is a given boundary value.

Therefore, D = d
dt

except at discontinuties.

Let S � Rn be open.

Let X the set of all feasible solutions of (P) be given by

X = fx 2 C(I;Rn) j x(a) = �; x(b) = �; hj(t; x(t); _x(t)) � 0;

t 2 I; j = 1; 2; � � � ;m g:

In the sequel we shall always denote the set f1; 2; � � � ; pg and f1; 2; � � � ;mg by

�p and �m respectively.

DEFINITION 1. A feasible solution x� of (P) is an e�cient solution of (P) if there

exist no other feasible x for (P) such that

R b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

�

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

for all i 2 �p (3)

and

R b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

<

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

for some j 2 �p: (4)

By eliminating e�cient solutions causing unbounded trade-o� between objective

functions, we can de�ne the properly e�cient solutions as follows.

DEFINITION 2[5]. A feasible solution x� of (P) is a properly e�cient solution of (P)

if it is e�cient and if there exists a scalar M > 0 such that, for each i;R
b

a
fi(t;x�(t); _x�(t))dtR

b

a
gi(t;x�(t); _x�(t))dt

�

R
b

a
fi(t;x(t); _x(t))dtR

b

a
gi(t;x(t); _x(t))dtR

b

a
fj(t;x(t); _x(t))dtR

b

a
gj(t;x(t); _x(t))dt

�

R
b

a
fj(t;x�(t); _x�(t))dtR

b

a
gj(t;x�(t); _x�(t))dt

� M

for some j such thatR b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

>

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt
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whenever x is feasible for (P) andR b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

<

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

:

An e�cient point that is not properly e�cient is said to be improperly e�cient.

Thus for x� to be improperly e�cient means that for every scalar M > 0(no matter

how large) there is feasible point x and an i such thatR b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

<

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

and R
b

a
fi(t;x�(t); _x�(t))dtR

b

a
gi(t;x�(t); _x�(t))dt

�

R
b

a
fi(t;x(t); _x(t))dtR

b

a
gi(t;x(t); _x(t))dtR

b

a
fj(t;x(t); _x(t))dtR

b

a
gj(t;x(t); _x(t))dt

�

R
b

a
fj(t;x�(t); _x�(t))dtR

b

a
gj(t;x�(t); _x�(t))dt

> M

for all j such thatR b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

>

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

:

2. Main Result

The following theorem connects (P) and (Pv) with v = v�:

THEOREM 3 x� is a properly e�cient solution of (P) if and only if there exists

v�j =

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

;

for some j 2 �p such that x� is a properly e�cient solution of (Pv) with v = v�:

Proof. Let x� be a properly e�cient solution of (P) and let

v�j =

R b

a
f j(t; x�(t); _x�(t)dtR b

a
gj(t; x�(t); _x�(t))dt

for some j 2 �p: (5)

If x� is not an e�cient solution of (Pv) with v = v�, then there exists a feasible

solution x of (Pv) with v = v�, such thatZ b

a

ff i(t; x(t); _x(t))� v�i gi(t; x(t); _x(t))gdt

�

Z b

a

ff i(t; x�(t); _x�(t))� v�i g
i(t; x�(t); _x�(t))gdt for all i 2 �p
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and

Z b

a

ff j(t; x(t); _x(t))� v�j g
j(t; x(t); _x(t))gdt

<

Z b

a

ff j(t; x�(t); _x�(t))� v�j g
j(t; x�(t); _x(t)

�

)gdt for some j 2 �p:

It follows that

R b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

�

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

for all i 2 �p (6)

and

R b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

<

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

for some j 2 �p: (7)

Contradicting the e�ciency of x� in (P). Hence x� is an e�cient solution of (Pv) with

v = v�:

Now we shall show x� is a properly e�cient solution of (Pv) with v = v�: If x� is not

properly e�cient for (Pv) with v = v�; then, for every su�ciently large scalar M > 0,

there is x 2 X and an i such that

Z b

a

ff i(t; x(t); _x(t))� v�i g
i(t; x(t); _x(t))gdt < 0 (8)

and

R b

a
ff i(t; x�(t); _x�(t))� v�i g

i(t; x�(t); _x(t)
�

)gdt�
R b

a
ff i(t; x(t); _x(t))� v�i g

i(t; x(t); _x(t))gdtR b

a
ff j(t; x(t); _x(t))� v�j g

j(t; x(t); _x(t))gdt�
R b

a
ff j(t; x�(t); _x�(t))� v�j g

j(t; x�(t); _x�(t))gdt

> M (9)

for all j such that

Z b

a

ff j(t; x(t); _x(t))� v�j g
j(t; x(t); _x(t))gdt > 0 (10)

i.e.,

R b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

<

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

(80)
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�

R b

a
f i(t; x(t); _x(t))dt+ v�i

R b

a
gi(t; x(t); _x(t))dtR b

a
f j(t; x(t); _x(t))dt� v�j

R b

a
gj(t; x(t); _x(t))dt

> M (90)

for all j such that

R b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

>

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

(100)

Now (9') can be rewritten asR
b

a
fi(t;x�(t); _x�(t))dtR

b

a
gi(t;x�(t); _x�(t))dt

�

R
b

a
fi(t;x(t); _x(t))dtR

b

a
gi(t;x(t); _x(t))dtR

b

a
fj(t;x(t); _x(t))dtR

b

a
gj(t;x(t); _x(t))dt

�

R
b

a
fj(t;x�(t); _x�(t))dtR

b

a
gj(t;x�(t); _x�(t))dt

> M:

So (80); (90) and (100) imply that x� is not properly e�cient for (P).

Hence x� is properly e�cient in (Pv) with v = v�:

Conversely, let x� be a properly e�cient solution of (Pv) with v = v� where

v�j =

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

j 2 �p: (5)

then we shall show that x� is properly e�cient for (P).

If x� is not an e�cient solution of (P), then there exists a feasible solution x for (P)

such that R b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

�

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

for all i 2 �p (6)

and

R b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

<

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

for some j 2 �p: (7)

Now (5) together with (6) and (7) contradict the e�ciency of x� in (Pv) with v = v�

.

Thus x� is an e�cient solution of (P).

Now we shall show that x� is a properly e�cient solution of (P).

If x� is not properly e�cient for (P), then, there is an x 2 X and an i 2 �p such that

R b

a
f i(t; x(t); _x(t))dtR b

a
gi(t; x(t); _x(t))dt

<

R b

a
f i(t; x�(t); _x�(t))dtR b

a
gi(t; x�(t); _x�(t))dt

(11)
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and R
b

a
fi(t;x�(t); _x�(t))dtR

b

a
gi(t;x�(t); _x�(t) )dt

�

R
b

a
fi(t;x(t); _x(t))dtR

b

a
gi(t;x(t); _x(t))dtR

b

a
fj(t;x(t); _x(t))dtR

b

a
gj(t;x(t); _x(t))dt

�

R
b

a
fj(t;x�(t); _x�(t))dtR

b

a
gj(t;x�(t); _x�(t))dt

> M: (12)

for all M > 0 and for all j such that

R b

a
f j(t; x(t); _x(t))dtR b

a
gj(t; x(t); _x(t))dt

>

R b

a
f j(t; x�(t); _x�(t))dtR b

a
gj(t; x�(t); _x�(t))dt

(13)

i.e.,

Z b

a

f i(t; x(t); _x(t))dt� v�i

Z b

a

gi(t; x(t); _x(t))dt < 0: (110)

and

�

R b

a
f i(t; x(t); _x(t))dt+ v�i

R b

a
gi(t; x(t); _x(t))dtR b

a
f j(t; x(t); _x(t))dt� v�j

R b

a
gj(t; x(t); _x(t))dt

> M (120)

for all j such that

Z b

a

f j(t; x(t); _x(t))dt� v�j

Z b

a

gj(t; x(t); _x(t))dt > 0: (130)

So (110); (120) and (130) imply that x� is not properly e�cient for (Pv) with v = v�:

Hence x� is properly e�cient in (P).
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