• Title/Summary/Keyword: Multilevel Converter

Search Result 204, Processing Time 0.023 seconds

Optimal Selection of Arm Inductance and Switching Modulation for Three-Phase Modular Multilevel Converters in Terms of DC Voltage Utilization, Harmonics and Efficiency

  • Arslan, Ali Osman;Kurtoglu, Mehmet;Eroglu, Fatih;Vural, Ahmet Mete
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.922-933
    • /
    • 2019
  • The arm inductance (AI) of a modular multilevel converter (MMC) affects both the fault and circulating current magnitudes. In addition, it has an impact on the inverter efficiency and harmonic content. In this study, the AI of a three-phase MMC is optimized in a novel way in terms of DC voltage utilization, harmonics and efficiency. This MMC has 10 submodules (SM) per arm and the power circuit topology of the SM is a half-bridge. The optimum AI is adopted and verified in an MMC that has 100 SMs per arm. Then the phase shift (PS) and phase disposition (PD) pulse width modulation (PWM) methods are investigated for better DC voltage utilization, efficiency and harmonics. It is found that similar performances are obtained for both modulation techniques in terms of DC voltage utilization. However, the total harmonic distortion (THD) of the PS-PWM is found to be 0.02%, which is slightly lower than the THD of the PD-PWM at 0.16%. In efficiency calculations, the switching and conduction losses for all of the semiconductor are considered separately and the minimum efficiency of the 100-SM based MMC is found to be 99.62% for the PS-PWM and 99.64% for the PD-PWM with the optimal value of the AI. Simulation results are verified with an experimental prototype of a 6-SM based MMC.

Reduction of Components in Cascaded Transformer Multilevel Inverter Using Two DC Sources

  • Banaei, Mohamad Reza;Salary, Ebrahim;Alizadeh, Ramin;Khounjahan, Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.538-545
    • /
    • 2012
  • In this paper a novel cascaded transformer multilevel inverter is proposed. Each basic unit of the inverter includes two DC sources, single phase transformers and semiconductor switches. This inverter, which operates as symmetric and asymmetric, can output more number of voltage levels in the same number of the switching devices. Besides, the number of gate driving circuits is reduced, which leads to circuit size reduction and lower power consumption in the driving circuits. Moreover, several methods to determination of transformers turn ratio in proposed inverter are presented. Theoretical analysis, simulation results using MATLAB/SIMULINK and experimental results are provided to verify the operation of the suggested inverter.

Investigation of Capacitor Voltage Regulation in Modular Multilevel Converters with Staircase Modulation

  • Shen, Ke;Wang, Jianze;Zhao, Dan;Ban, Mingfei;Ji, Yanchao;Cai, Xingguo
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.282-291
    • /
    • 2014
  • This paper presents a detailed theoretical analysis and performance assessment of the capacitor voltage balancing strategies for staircase modulated modular multilevel converters (MMC) in terms of the algorithm structures, voltage balancing effect, and switching frequency. A constant-frequency redundancy selection (CFRS) method with minimal switching loss is proposed and the function realization of specific modules of the algorithm is given. This method is simple and efficient in both switching frequency and regulation capacity. Laboratory results show very good agreement with the theoretical analysis and numerical simulations.

Capacitance Estimation of the Submodule Capacitors in Modular Multilevel Converters for HVDC Applications

  • Jo, Yun-Jae;Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1752-1762
    • /
    • 2016
  • To achieve higher reliability in the modular multilevel converters (MMC) for HVDC transmission systems, the internal condition of the DC capacitors of the submodules (SM) needs to be monitored regularly. For an online estimation of the SM capacitance, a controlled AC current with double the fundamental frequency is injected into the circulating current loop of the MMC, which results in current and voltage ripples in the SM capacitors. The capacitor currents are calculated from the arm currents and their switching states. By processing these AC voltage and current components with digital filters, their capacitances are estimated by a recursive least square (RLS) algorithm. The validity of the proposed scheme has been verified by simulation results for a 300-MW, 300-kV HVDC system. In addition, its feasibility has been verified by experimental results obtained with a reduced-scale prototype. It has been shown that the estimation errors for both the simulation and experimental tests are 1.32% at maximum.

Minimization of Rising and Falling Times of A Boost Type Converter Output Voltage in Pulsed Mode Operation

  • Nho Eui-Cheol;Kim In-Dong;Joe Cheol-Je;Chun Tae-Won;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper describes an improved short-circuit protection method with a boost type rectifier using a multilevel ac/dc power converter. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. Once the fault has been cleared the dc power is reapplied to the load. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the dc voltage because the dc output capacitors hold undischarged state. The converter, which employs the proposed method, has the characteristics of a simplified structure, reduced cost, weight, and volume compared with a conventional power supply, which has frequent output short-circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

Development of a 4kW, High Efficiency, Series-Resonant DAB Converter (4kW급 고효율 직렬 공진형 DAB 컨버터 개발)

  • Sangmin, Lee;Gil-Dong, Kim;Seung-Hwan, Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.498-506
    • /
    • 2022
  • This study proposes a design methodology for bidirectional, series-resonant, dual-active bridge (SRDAB) converters. The circuit parameters of the SRDAB converters are designed by considering the output power and efficiency of the converter. The proposed method can be used to design a high-power, high-efficiency SRDAB converter. A voltage controller is employed to manipulate the output voltage of the converter, and the controller gains are selected using the transfer function and frequency response of the controller. Simulation results show that the output power of the designed SRDAB converter is 2 kW per converter module as designed. In addition, the performance of the voltage controller is evaluated using the simulation and experimental results. The output voltage follows the reference voltage within 10 ms under the step change of the reference command. The output voltage also follows the reference voltage under the step load change. The efficiency of the designed SRDAB converter is 95.6%.

A high efficient PV system using series connection of DC-DC converter's output with photovoltaic panel (광전지 패널과 DC-DC 컨버터 출력의 직렬 접속을 이용한 고효율 PV 시스템)

  • Kim, Ho-Sung;Kim, Jong-Hyun;Min, Byung-Duk;Yoo, Dong-Wook;Hong, Ji-Tae;Lee, Dong-Gil;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1146-1147
    • /
    • 2008
  • PV Power Conditioning System (PCS) must have high conversion and low cost. Generally, PV PCS uses either a single converter or multilevel module integrated converter (MIC). Each of these approaches has both advantage and disadvantage. For a high conversion efficiency and low cost of PV module, this paper proposes series connection of module integrated DC-DC converter's output with PV panel. Output voltage of PV panel is connected to the output capacitor of flyback converter. Thus, converter's output voltage is added to the output voltage of PV panel. Isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces power level of DC-DC converter and enhances the energy conversion efficiency compared with conventional DC-DC converter.

  • PDF

Novel Voltage Source Converter for 10 kV Class Motor Drives

  • Narimani, Mehdi;Wu, Bin;Zargari, Navid Reza
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1725-1734
    • /
    • 2016
  • This paper presents a novel seven-level (7L) voltage source converter for high-power medium-voltage applications. The proposed topology is an H-bridge connection of two nested neutral-point clamped (NNPC) converters and is referred to as an HNNPC converter. This converter exhibits advantageous features, such as operating over a wide range of output voltages, particularly for 10-15 kV applications, without the need to connect power semiconductors in series; high-quality output voltage; and fewer components relative to other classic seven-level topologies. A novel sinusoidal pulse width modulation technique is also developed for the proposed 7L-HNNPC converter to control flying capacitor voltages. One of the main features of the control strategy is the independent application of control to each arm of the converter to significantly reduce the complexity of the controller. The performance of the proposed converter is studied under different operating conditions via MATLAB/Simulink simulation, and its feasibility is evaluated experimentally on a scaled-down prototype converter.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.