• Title/Summary/Keyword: Multibody System

Search Result 239, Processing Time 0.026 seconds

Computation for Deformation Modes of a Flexible Body in Multibody System using Experimental Modal Analysis (실험적 모드해석을 이용한 다물체계내 유연체의 변형보드 계산)

  • Kim, Hyo-Sig;Kim, Sang-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1718-1723
    • /
    • 2003
  • This paper presents a computational method for deformation modes of a flexible body in multibody system from the experimental modal analysis and an efficient method for flexible multibody dynamic analysis by use of the modes. It is difficult to directly use experimental modal parameters in flexible multibody dynamic analysis. The major reasons are that there are many inconsistencies between experimental and analytical modal data and experimental noises are inherent in the experimental data. So two methods, such as, a method for ortho-normalization of experimental modes and the other one for mode expansion, are suggested to gain deformation modes of a flexible body from the experimental modal parameters. Using the virtual work principle, the equation of motion of a flexible body is derived. The effectiveness of the proposed method will be verified in the numerical example of cab vibration of a truck by comparing analysis and test results.

  • PDF

Analysis of Dynamic Response of a Floating Crane and a Cargo with Elastic Booms Based on Flexible Multibody System Dynamics (붐의 탄성효과를 고려한 해상크레인의 유연 다물체 동역학 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • This study analyzes the dynamic response of a floating crane with a cargo considering an elastic boom to evaluate(or for evaluation of) its flexibility effect on their dynamic response. Flexible multibody system dynamics is applied in order to establish a dynamic equation of motion of the multibody system, which consists of flexible and rigid bodies. In addition, a floating reference frame and nodal coordinates are used to model the boom as a flexible body. The study also simulates the coupled surge, pitch, and heave motions of the floating crane carrying the cargo with three degrees of freedom by numerically solving the equation. Finally, the simulation results of the elastic and rigid booms are comparatively analyzed and the effects of the flexible boom are discussed.

Development of a Multibody Dynamics Program Using the Object-Oriented Modeling

  • Han, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.61-70
    • /
    • 2003
  • A multibody system dynamics analysis program is presented using one of the most useful programming methodologies, the object-oriented modeling, The object-oriented modeling defines a problem from the physical world as an abstract object. The object becomes encapsulated with the data and method, Analysis is performed using the object's interface, It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program, The method presented in this paper has several advantages, Since the mechanical components of the multi-body system are converted into the class, the modification, exchange, distribution and reuse of classes are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems, Information can be communicated to each object through messaging. This makes the modeling of new classes easier using the inheritance, When developing a S/W for the computer simulation of a physical system, it is reasonable to use object-oriented modeling.

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

A Systematic Formulation for Dynamics of Flexible Multibody Systems (탄성 다물체계의 체계적인 동역학적 해석)

  • 이병훈;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2483-2490
    • /
    • 1993
  • This paper presents a systematic formulation for the kinematic and dynamic analysis of flexible multibody systems. The system equations of motion are derived in terms of relative and elastic coordinates using velocity transformation technique. The position transformation equations that relate the relative and elastic coordinates to the Cartesian coordinates for the two contiguous flexible bodies are derived. The velocity transformation matrix is derived systematically corresponding to the type of kinematic joints connecting the bodies and system path matrix. This matrix is employed to represent the equations of motion in relative coordinate space. Two examples are taken to test the method developed here.

Analysis of Actuating and Joint Reaction Forces for Various Drivings in Multibody Systems with Closed-Loops (페루프를 포함하는 다물체계에 있어서 구동방법에 따른 구동력 및 조인트 반력 해석)

  • Lee, Byeong-Hun;Choe, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1470-1478
    • /
    • 2000
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the system and to design the components. This paper presents an algorithm tha t calculates actuating forces(or torques) depending on the various driving types to produce a given system motion. The joint reaction forces(or torques) of multibody systems with closed-loops are analyzed in the Cartesian coordinate space using the inverse velocity transformation technique. Two numerical examples were carried out to verify the algorithm proposed.

Dynamic Analysis of the Latch Needle Cam System (편직바늘.캠 시스템의 동역학해석)

  • Jeong, Gwang-Yeong;Kim, Yeong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1764-1771
    • /
    • 2002
  • The latch needle cam system of circular knitting machines is analysed using multibody dynamics. A formulation is made to obtain the vertical stiffness between the needle and the cam. By implementing this formulation into the data of the multibody dynamics program, the motion of the needle is described and the forces and impulses between the needle and the cam are obtained.

Development of a Multibody Dynamics Analysis System Using the Object-Oriented Data Model (객체지향 데이터 모델을 이용한 다물체 동역학 해석 시스템 개발)

  • 박태원;송현석;서종휘;한형석;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1487-1490
    • /
    • 2003
  • In this paper, the application of object-oriented Data Model to develop a multibody dynamic system, called O-DYN, is introduced. Mechanical components, such as bodies, joints, forces are modeled as objects which have data and method by using object-oriented modeling methodology. O-DYN, a dynamic analysis system, based on the object-oriented modeling concept is made in C++. One example is analyzed through the O-DYN, It is expected that the analysis program or individual module constructed in this paper would be useful for mechanical engineers in predicting the dynamic responses of multibody systems and developing an analysis program

  • PDF

On the Motion of the Structure Varying Multibody Systems with Two-Dimensional Dry Friction

  • Xie Fujie;Wolfs Peter;Cole Colin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.927-935
    • /
    • 2005
  • In the present paper the dynamics of the structure varying multibody systems caused by stick-slip motion with two-dimensional dry friction are analyzed. The methods to determine friction force both in stick and slip states are described. The direct method of considering the wagon bogie system as a structure varying system was used to consider two dimensional friction at the wheelset-side frame connection. The concept of friction direction angle used to determine the friction force components of two-dimensional dry friction both in the stick and slip motion states was used. A speed depended friction coefficient was used and described approximately by hyperbolic secant function. All switch conditions were derived and friction forces both for stick and slip states. Some simulation results are provided.

Gun System Vibration Analysis using Flexible Multibody Dynamics (유연 다물체 동역학을 이용한 포신-포탑시스템의 진동해석)

  • 김성수;유진영
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.203-211
    • /
    • 1998
  • In order to find out relationship between hit probability and gun firing of a moving tank, a turret and flexible gun system model has been developed using a recursive flexible multibody dynamics. For a firing simulation model, nodal coordinates for a finite element model of a flexible gun have been employed to include transverse loads to the gun tube due to moving bullet and ballistic pressure. Modal coordinates are also used to represent the motion induced gun vibration before a firing occurs. An efficient switching technique from modal equations to nodal equation has been introduced for an entire gun firing simulation with a rotating turret.

  • PDF