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A Time Integration Method for Analysis of Dynamic Systems
Using Domain Decomposition Technique
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This paper presents a precise and stable time integration method for dynamic analysis of

vibration or multibody systems. A total system is divided into several subsystems and their

responses are calculated separately, while the coupling effect is treated equivalently as constant

force during time steps. By using iterative procedure to improve equivalent coupling forces, a

precise and stable solution is obtained. Some examples such as a seismic response and multibody

analyses were carried out to demonstrate its usefulness.
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1. Introduction

The domain decomposition method (DDM) is
useful for solving a very large equation. Usually
the term DDM is used as a technique of solving a
linear equation of a total system which is divided
into many subdomains, and calculations are car-
ried out separately in each domain accompanying
the interface equation connecting subdomains
(Yagawa and Sioya, 1998 ; Akiba et al., 2003 ;
Smith et al., 1996).

However, in this paper DDM is used as the
same meaning of partitioned or substructure me-
thod for dynamic analyses of a system having not
so large degree of freedom and consisting of a
few substructures. There are some merits to apply
DDM to dynamic systems. One is that a suitable
expression of equation or solver can be chosen
in complicated systems consisting of different
field substructures such as structure, control or
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hydraulic systems. In addition check or recogni-
tion is easy because the response behavior can be
observed in coupled and decoupled conditions. Of
course a large system is solved effectively.

So, the target of this study is to develop an
effective dynamic analysis method, and at the first
step we consider a case that subsystems are only
coupled by springs, and they are solved by the
stable Newmark method.

2. DDM with Constant Coupling
Force (CCF) During a Time Step

At first a DDM with an approximation of
CCF {(Imanishi, 1992) is introduced in which
coupling spring forces are treated as constant. For
simplicity we consider a dynamic system con-
sisting of two substructures shown in Fig. 1 and
explain the CCF method.

A B

Fig. 1 A system coupled by springs
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2.1 Theory of the CCF method
Equation of motion of a linear system is ex-
pressed by

Mx+Cx+Kx=f (0

where M, C, K are mass, damping, stiffness ma-
trices, and x, f are displacement and force vectors
respectively. In the two subdomain system, Eq.
(1) can be represented by

[Mu 0 :I{XI}_[_I:CII 0]{5(1}
0 My (X 0 Cx|ix2

2
+[K11 K12]{X1}={f1} ( )
Ko Koz | L f,
Eq. (2) is rewritten as
M11X1+C11X1 +K11X1=f1—K12i2 (3)

Mz%z + CooXz + Kasxa=f> — KaiX:

Here coupling terms KpX: and KaX: are ap-
proximated by Ki2X» and Kz1X;, where X; and X
are equivalent displacements treated as constant
during a time step width. They may be decided as

f(1=X1n, i2=x2n (43)
or
X1 =X1n+0.5hX15, X2=Xon+0.5h%Xzn (4b)

Where subscript 1 and 2 mean subdomain, and n
means time step. In Eq. (4a) X is approximated
by the displacement at the beginning of time step
width h, while X in Eq. (4b) is a mid point value
predicted by using displacement X, and velocity
Xn.

2.2 Time integration by the Newmark
method
In order to solve Eq. (1) or Eq. (3) the New-
mark-8 method with #=1/4 is used, which is
unconditionally stable and has no numerical
damping. The algorithm is

¥n1=%X.+Aa
Xn+1=i(n +hxn+05hAa (5)
Xn41=Xn+hx,+0.5h*%,+ Sh*Aa

Where Aa is acceleration change during h.
Substituting Eq.(5) into Eq.(1) at time tn+: yields

[M+0.5hC+ A’K] Aa

:fn+1_{MXn+C(Xn+th> +K(Xn+th+0-5h2Xn)} (6)

Once Aa is obtained by solving Eq. (6), Xn+1,
Xn+1, Xn+1 are calculated in Eq. (5).

In the case of DDM, following equations are
derived and used in each domain.

[M1+0.5hCyi + ShPK ) Aay =f1001—Kiske

7
—{Mu%n+Cu (Xin+h¥im) +Ku (Xia+hxia+0.50%0) } (72)

[Mzz +0.5hCsp+ thKzz] Aazzfz,nﬂ ~Kaux,

—{ MagXan+Caa (Xen+hXen) + Koz (Xan +1ikon+0.50%en) } (70)

After solving Aa; by Eq. (7), Eq. (5) is used to
obtain Xin+t1, Xin+1, Xin+1 for i=1, 2.

2.3 Calculation examples

2.3.1 Model

The validity of this method is examined thor-
ough some calculations for a two degree of free-
dom vibration system shown in Fig. 2. The mo-
del constants, natural frequencies, and conditions
used in the analysis are

mass m=my=1 kg,
damping : ¢;=c2=0 Ns/m
" k1=k2=100 N/m,
k12=100 or k;2=1000 N/m

stiffness

Natural angular frequency

D w1=10, w.=/300 rad/s
C1=10, w;=y2100 rad/s
initial condition . x1=1, x.=—1, X;=%2=0
time step width > h=0.01s

integration method | Newmark (£=1/4)

when k;2=100
WhCl’l k12=1000

Free vibration responses from initial displace-
ment are calculated by the CCF method. The

kq kj2 ko

(@) (@) (@] (@)

Fig. 2 Two mass system connected by spring
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initial condition is set so that only 2nd mode
response occurs, for it is unstable mode. Its exact
solution is given by

X1=C0S Wat, X2=—C0S w2t

2.3.2 Calculation results and discussion

Calculation results are shown in Figs. 3, 4, 5.
Fig. 3 shows the response waves when kiz=100,
X=xXn. Undesirable growth in amplitude appear-
ed due to the approximation of CCF. In Fig. 4
equivalent displacements are replaced to X=
Xn+0.5hXs, which improved stability and accu-
racy. In Fig. 5 harder spring with ki>=1000 is
used in stead of kiz=100. Remarkable instability
appeared even though X=xn+0.5hX, is used.
- The CCF method is reported by Fujikawa et al.
(1985) . According to their results and the above
examples, characteristics of the CCF method is
summarized as

(1) The CCF method is available when the
coupling stiffness is not strong.

digp.!
max=2.66 i "/\
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Fig. 3 Calculated response {k;;=100, X=xn)
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Fig. 4 Calculated response (kj;=100, X=xn+0.5
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Fig. 5 Calculated response (ki=1000, X=x,+0.5
hxn)

(2) Stability and accuracy may be spoiled by
the approximation of CCF treatment.

(3) The use of equivalent displacement X=
Xn+0.5h%, improves stability and accuracy com-
pared with X=Xx.

(4) Stability becomes worse as coupling stiff-
ness is lager or time step width becomes larger.

3. DDM with Iterations

As shown in the previous section, the CCF
method is available when subsystems are coupled
by soft springs, however numerical instability
appears and response grows up, when springs are
strong. In order to improve them an iterative
procedure is introduced in the CCF method. The
algorithm is explained based on Egs. {8a) (8b),
which are almost same as Eq. (7), but iterative

scripts are added

[M11+0.5hCy + fh°Ku ] Aaf P =11 p41 — Kk (8a)
—{MuXin+ Ci (Kinthiten) +Kuis (Xin+hkin +0.5h%:0) }
[M240.5hCz + Sh?Ke,] AaftV =15 1 — Kk ¥ (8b)
- { MZZ.XZn + sz (XZn + hXZn) + Kzz (in + hXZn +0. 5h23i2n> }
At first (k=0), approximate Aa®*? is calculated
using X®¥=% in Eq. (4a) or (4b), and the dis-

X(k+1)

placement is calculated. This is the same

process of the CCF method. Next %% is renewed

&+ and carried out the calculation

by using x
again to obtain the new Aaf**V and x®**™. This
procedure is continued until converge.

Two kinds of method are considered. One is
that both X§° and %{® are renewed after calcula-
tions are finished in all subdomains, which is
called ‘BlkJacobi’ here. Another is that ¥ or X{*
is replaced immediately if it is obtained in the
analysis of another subsystem. This method is
called ‘BlkSeidel’ here, as mentioned at next sec-
tion.

Fig. 6 shows the results by these iterative
methods. The same result are obtained in both
BlkJacobi and BlkSeidel, though the number of
iterations until convergence is different. Calcula-
tion condition is the same as Fig. 5. It is seen that
very good result is obtained.
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Fig. 6 Calculated response (kz=1000, X=x%,+0.5
hxx)
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Fig. 7 Convergence behavior

Convergence behavior is investigated at the
various analysis condition that k12=100, 1000 N/
m in stiffness, BlkJacobi, BlkSeidel in method,
h=0.005, 0.01, 0.02s in step width. Residual error
against iteration is plotted in Fig. 7. Meaning of
symbols in the figure is listed in Table 1. As for
the initial displacement choosing way of Eq. (4a)
or Eq. (4b) gives little difference in numbers of
iteration.

Table 1 Analysis conditions and spectrum radii

Symbol | Method |kiz, N/m| h, s S.radius
J2 BlkJacobi 100 0.01 | 2.50 X 1073
S2 BikSeidel 100 0.01 |0.006x107%
13 BlkJacobi 1000 0.01 | 249x107%
S3 BlkSeidel 1000 0.01 [0.622x1078

S3H BlkSeidel 1000 0.005 | 0.039 x 1073
S3D BlkSeidel 1000 0.02 | 9.80x107%

Concerning the convergence, it is found from
Fig. 7 that

(1) Blkseidel is better than BlkJacobi.
(2) Tt is faster as the stiffness is weaker.
(3) Tt is faster as the time step width is smaller.

4. Discussion on Convergence

4.1 Jacobi and Seidel methods

As the above iterative method is related to the
Jacobi or Gauss-Seidel (Hereinafter denoted as
Seidel) methods for solving linear equations, we
review their algorithms and characteristics. A
linear equation

Ax=b (9_)

can be solved by the Jacobi or Seidel method
iteratively.

In the Jacobi method, A is separated as A=
D+E, and Eq. (9) is rewritten by

Dx*tV=—Ex®+hb (10)

where D=diag(A), E=A—D, and superscript
(k) denotes iteration number. It is cleared that
this iteration procedure is stable and converge if
A is diagonally dominant (Mori, 1984).

In the Seidel method A is divided into L+D+
U, and Eq. (9) is expressed by

Dx**V=—Lx**—Ux®+b (11)

where L is lower and U is upper triangular ma-
trices. When i-th row of x**? is calculated, com-
ponents of xX**V used in the calculation of Lx**"
are already obtained. So Eq. (I1) is explicitly
solved. This Seidel method is proved to be stable
if A is positive and symmetrical (Mori, 1984).

In the case that A is 2X2 matrix, they are
written as

_|an 0 _ 0 ap
D_[O 8.22:| E_[am 0}
00 |0 ae
L_[am 0:| U_[O O]

4.2 Discussion on convergence and stability

The similar algorithm as Eqs. (10), (11) can be
used when ayi, -*+, a2 become matrices and xy, -,
f, become vectors, namely
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_|Au 0 |0 Ap
D_|: 0 Azz] E_[Au 0 }

70 0).. [0As
L_[A21 0] U_[o o]

In the case of dynamic analysis by the Newmark

(12)

or Newton methods these matrices are

A1 =M;;+0.5hCi + Sh?Ki A= pSh*K,

(13)
Az = hKa Kzz=M3;+0.5hCoz+ SHP K22

The matrix D is a block diagonal, So they may be
called blocked Jacobi or blocked Seidel me-
thods respectively. (we denote them ‘BlkJacobi’
and ‘BlkSeisel’ here). Their stability are better
than Jacobi or Seidel method, and they are
evaluated by the spectrum radius of iterative
matrix H defined as H=D"'E or H=(L+D)!
U. When its value is smaller than unit iterations
are stable and X converge to the exact solution.
(Spectrum radius is the absolute maximum of
eigenvalues of matrix H, and it can be obtained
by eigenvalue analysis.)

It is found by Eq.(13) that the matrix A in
dynamic analysis is advantageous to convergence
than in static problems, because masses makes it
diagonally dominant.

Spectrum radii used in the calculations of Fig.
7 are shown in the last column of Table 1.

5. Seismic Response Analysis

5.1 MCK matrices of equation of motion

In this section the present method is applied to
a vibration analysis of a beam structure. The
equation of motion can be derived by the finite
element method, using scalar mass, damping,
spring, and beam elements. M and K in Eq. (1)
are built up by assembling element matrices :

M:Z NeLe TMeIJe KZE NeLe TKeLe (14>

where Me, Ke are mass and stiffness matrices in
each element, Le is a coordinate transform matrix
and Ne is 2 [0—1] matrix that maps the element
components to the total system.

In two dimensional problems the element stiff-
ness matrix K¢ of a beam is given by

RE/E 0 6EI/E-LE/E 0  6EI/E

0 AE/L 0 0 -AEN1 0
K= ¢EI/E 0 4EI/1 6E/F 0  2EI (15)
“|-1EYE 0 0 EP 0 —¢El/E

0 -AE/1 0 0 AE1 o
6E/E 0 EI -6EY/E 0 4EI

where 1 is length, E is Young’s modulus, I is
sectional moment of inertia, and A is sectional
area.

The matrix of a scalar spring with stiffness ki;
connecting two freedoms 1 and j is

kij - ki]}
K= 16
[ —ki; ki (16)

The matrix of scalar mass my or spring k; at one
freedom 1 is

Ke=k; Me=my (17)

5.2 Calculation of a seismic response

An earthquake response analysis is often carri-
ed out for a seismic design of structures. Here we
apply the present method to a seismic response
analysis. Fig. 8 shows a model which consists of
two towers and a piping. Towers are modeled by
beam elements (node 1-4, and node 5-7), and
piping is modeled as connecting spring (node
3-7), Mass values are prepared by calculation of
weight. Rayleigh damping C=¢K is used, where
a is set to 0.00417 so that damping ratio of lst
mode equals 0.03. Its vibration characteristics is
shown in Table 2.

Responses to El Centro NS earthquake were
calculated in the condition that the maximum
acceleration is 340 Gal (3.4 m/s?), and time step
is 0.02s. The results by the presented method is
shown in Fig.9. Waves in the figure indicate the
relative displacement between point 3 and 7, the

Table 2 Vibration characteristics

Natural
Mode Natural Damping 'flura freque.ncy
- without coupling,
number | frequency, Hz | ratio
Hz
Ist 2.29 0.030 2.01
2nd 4.39 0.057 2.35
3rd 11.84 0.155 11.58
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Fig. 9 Seismic response

input acceleration, accelerations at points 7, 4 and
displacements at point 7, 4 from bottom to up-
ward, whose maximum values represented by cm
or cm/s? units are shown in the figure.

For a comparison, the usual analysis treated as
total system was done. Its results were perfectly
coincident with the Fig. 9, which demonstrates
that the present method is reasonable and appli-
cable.

6. Multibody Analysis
Here, in this section the present method is
applied to simple multibody systems including a
nonlinear large link motion.

6.1 Nonlinear systems
Equation of motion with nonlinear spring

forces is represented by

g=Mx+Cx+Kx+fin—f=0 (18)

where fin: is an element force. Assume the varia-
bles Xn, Xn, Xn at time t, are already known, then

those at next step are calculate as follows. Let a%,

v d® be the approximate values of Xns1, Xn+1,

Xn+1. The error g at to4 is
g =Ma® +Cv®+Kd® +fin. (d®) —fnss (19)

In the Newmark algorithm a®, v, d% are ex-
pressed by

a(k) =%, +Aa(k)
v®=x,+h¥,+0.5hAa® (20)
d(k) =—Xn +th + 05h2Xn + thAa(k)

So, g™ in Eq. (19) is regarged as a function of
Aa. Applying the Newton method to Eq. (19),
modification of Aa is given by

AaH=Ag — [ JW0]-1gw
where
og oa od | o od
k—-_Y8s _Yy_
3= 5na MG 6 aAa+K3Aa 3d a (21)

=M+0.5hC+ gh* (K+Ky)

So, the procedure to obtain Xpi1, Xn41, Xn+1 1S
shown as

(1) At the beginning of k=0, set Aa®=0
(2) Calculate a®, v®, d® by Eq. (20)
(3) Calculate g using a™, v®, d% by
Eq. (19)
(4) Calculate matrix
J®=M+0.5hC+ Sh*(K+Ky)
(5) Solve
[M+0.5hC+ gh*(K+Ky) ] da=—g®
(6) Modify Aa**P=a®+a
(7) go to (2) until convergence
(8) if converged, replace
P e P S S

6.2 Element force and matrix of a truss

In order to analyze a motion of a system in-
cluding truss element, the fin: and stiffness Kn=
(0fini/dd) of truss in Egs. (19) and (21) should
be calculated. For plane motion with two degree
of freedom per node they are obtained as follows.
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y
(Xj ,yj)

(Xi,y1)

Fig. 10 Truss element

When coordinates of the truss are given, strain
energy U is expressed by

U=(1/2)k(L—1L)?

where k=AE/L, L=V (x;—x)*+ (yi—vi) 2
Element forces are obtained by differentiating
U with coordinate, for example

fro=2Y — kAL cos
3X1

where AL=L—L,, L, is free length, « is truss
angle shown in Fig.10. Components of stiffness

(22)

matrix are obtained by differentiating force with
coordinate, for example

_ofix 0AL dcos a
Ku= o k <cos a-ae +AL o, >
=k cos® a

Consequently f. and K. are given by

-Te fcc cs 0—cc —cs 0]
—Ts s¢ ss 0 —sc—ss0
0 0 01 0 0 1
fo= =k 1
=1 T [ BTK| e —es0 cc cs 0 M
Ts —sc —ss 0 sc ss 0
0 L 0 010 0 1]

where T=KkAL, c=cos @, s=sin «.
6.3 Motion analysis

6.3.1 Analysis of a double pendulum by usual
method

A double pendulum is analyzed by the usual

method (not DDM) to check the nonlinear an-

alysis with truss elements. The model is shown in

Fig. 11. At the initial condition two pendulums are

Fig. 11 Double pendulum

located horizontally without velocity. The nodal
point 1 is supported with stiff springs. A free fall
motion by gravity is calculated. The calculated
locus of motion is plotted in Fig. 11. Reasonable
results are obtained. Used data are

Length of truss: 0.5 m each
Sectional area : 0.002 m®
Young’s modulus: 207 GPa
Mass : 9.8 kg

Damping : C=0

Time step width: h=0.02s

6.3.2 Analysis of a pendulum supported by a
flexible beam structure by the present
method

As a problem to apply DDM, a pendulum

supported by a flexible structure is taken. The
model is shown in Fig. 12 or 13. A pendulum
(node 4-5) and structure (node 1-2-3) are mo-
deled by a truss and beams. Both are connected by
springs in x and y directions between node 3 and
4 (they are at same position). The total system is
divided into the beam structure (subsystem 1)
and the pendulum (subsystem 1), and analyzed
by the BlkSeidel method. Used data are

Length of truss: 1.0m
Length of beams: 2.0, 1.2 m
Sectional area : 0.0006 m®
Young’s modulus : 207 MPa
Coupling stiffness : 106 N/m
Mass : 0.98 kg
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1

Fig. 12 A pendulum supported by a structure
(Free Fall Response)

1

Fig. 13 A pendulum suported by a structure (Whirl
Motion Under Initial Velocity Given)
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disp 3y
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disp 5
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Fig. 14 Response waves

Damping : C=0 Ns/m,
Time step width : h=0.02s

(1) Swing motion

Fig. 12 show a calculation result. Here the truss
is located horizontally without velocity at the
initial condition. A free fall motion due to gravity
is analyzed. Small deflection of the beam is ob-
served.

7. Conclusions

A domain decomposition method for dynamic
analysis is proposed. It is an extension of the
CCF method by introducing iteration process.
Stability and convergence are discussed based on
the Jacobi or Seidel methods. It is found that

(1) The BlkSeidel method has better conver-
gence behavior than BlkJacobi.

(2) Convergence of BlkSeidel is assured for
positive and symmetric matrices.

(3) Convergence is better as coupling stiffness
is weaker, and time step is smaller.

(4) Convergence is much better in dynamic
system than in static system because masses im-
prove the matrix characteristics of diagonally
dominant.

(5) Choosing way of the initial displacement is
not so important.

Some calculations were carried out, and it is
demonstrate that this present method is reason-
able and useful.
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