• Title/Summary/Keyword: Multibody

Search Result 424, Processing Time 0.022 seconds

Configuration sensitivity analysis of mechanical dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.112-119
    • /
    • 2001
  • Design sensitivity is an important is an important device in improving a mechanical system design. A continuum design consists of the shape and orientation design. This research develops the shape and orientation design sensitivity method. The configura-tion design variables of multibody systems define the shape and orientation changes. The equations of motion are directly differentiated to obtain the governing equations for the design sensitivity. The governing equation of the design sensitivity is formulated as an over determined differential algebraic equation and treated as ordinary differential equations on mani-folds. The material derivative of a domain functional is performed to obtain the sensitivity due to shape and orientation changes. The configuration design sensitivities of a fly-ball governor system and a spatial four bar mechanism are obtained using the proposed method and are validated against those obtained from the finite difference method.

  • PDF

A real time method of vehicle system dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.18-28
    • /
    • 2001
  • Super computers has been utilized to carry out vehicle dynamics in real time. This research propose an implicit integra-tion method for vehicle state variables. Newton chord method is empolyed to solve the equations of motion and con-straints. The equations of motion and constraints are formulated such that the Jacobian matrix for Newton chord method is needed to be computed only once for a dynamic analysis. Numerical experiments showed that the Jacobian matrix generat-ed at the initial time could have been utilized for the Newton chord iterations throughout simulations under various driving conditions. Convergence analysis of Newton chord method with the proposed Jacobian updating method is carried out. The proposed algorithm yielded accurate solutions for a prototype vehicle multibody model in realtime on a 400 MHz PC compatible.

  • PDF

Modeling of the Maglev Vehicle Running over an elevated Guideway Using Flexible Multi-body Dynamics Based on the Model Superposition Method (모드중첩법을 이용한 자기부상열차/유연궤도 동적 모델링 연구)

  • Han, Hyung-Suk;Lee, Jong-Min;Kim, Young-Joong;Kim, Dong-Seong;Kim, Sook-Hee;Lee, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.229-238
    • /
    • 2006
  • In general, the Maglev vehicle is run over an elevated guideway consisting of steel or concrete structure. Since the running behavior of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluating the dynamics of both the vehicle and guideway. A new method based on flexible multibody dynamics is proposed to model the Maglew vehicle. This method combines the levitation controller, vehicle, and guideway into a coupled model To verify the method, an urban transit is analyzed using the method and discussions are carried out.

  • PDF

Hybrid Position/Force Control for Dynamic Walking of Biped Walking Robot (이족보행로봇의 동적 보행을 위한 혼합 위치/힘 제어)

  • 박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.566-569
    • /
    • 2000
  • This hybrid position/force control for the dynamic walking of the biped robot is performed in this paper. After the biped robot was modeled with 14 degrees of freedom of the multibody dynamics, the equations of motion are constructed using velocity transformation technique. Then the inverse dynamic analysis is performed for determining the driving torques and the ground reaction forces. From this analysis, obtains the maximum ground contact force at the moment of contacting which act on the rear of the sole of swing leg and the distribution curve of the ground reaction. Because these maximum force and distribution type acts an important role to the stability of the whole dynamic walking, they are reduced and distributed smoothly by means of the trajectory of the modified ground reaction force. This new trajectory is used to the reference input for more stable dynamic walking of the whole walking region.

  • PDF

Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot (이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석)

  • 김진석;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF

Development of Inertial Locking Anti-G Buckle of A Seatbelt System With Pre-tensioner (프리텐셔너가 장착된 시트벨트 시스템의 관성잠김 안전버클 개발)

  • Tak, Tae-Oh;Kuk, Min-Gu;Kim, Dae-Hee;Park, Jae-Soon;Shin, Seung-Eon;Choi, Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.47-54
    • /
    • 2006
  • To improve passenger safety, seat belt systems with pre-tensioner that tightens seat belt webbing using explosive just before collision are widely used these days. Even though seatbelt must not unlatched without passengers' operation. explosive power of pre-tensioner can cause unlocking of a buckle. To prevent the unlocking, an anti-g mass that blocks displacement of the release button has been attached to the buckle. In this study, the dynamics and statics of locking mechanism associated with operation of anti-g buckle has been theoretically investigated, and important design variables that affect the operation of anti-g buckle have been identified. Through the total seat belt system's dynamic simulation using force and displacement inputs obtained from seat belt sled test, design of the proposed anti-g buckle has been validated.

  • PDF

Dynamic Analysis of Multi-body Systems Considering Probabilistic Properties

  • Choi, Dong-Hwan;Lee, Se-Jeong;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.350-356
    • /
    • 2005
  • A method of dynamic analysis of mechanical systems considering probabilistic properties is proposed in this paper. Probabilistic properties that result from manufacturing tolerances can be represented by means and standard deviations (or variances). The probabilistic characteristics of dynamic responses of constrained multi-body systems are obtained by two ways : the proposed analytical approach and the Monte Carlo simulation. The formerpaper, necessitates sensitivity information to calculate the standard deviations. In this a direct differentiation method is employed to find the sensitivities of constrained multi-body systems. To verify the accuracy of the proposed method, numerical examples are solved and the results obtained by using the proposed method are compared to those obtained by Monte Carlo simulation.

Turning Dynamics and Equilibrium of Two-Wheeled Vehicles

  • Chen Chih-Keng;Dao Thanh-Son;Yang Chih-Kai
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.377-387
    • /
    • 2005
  • The equations of motion of two-wheeled vehicles, e.g. bicycles or motorcycles, are developed by using Lagrange's equations for quasi-coordinates. The pure rolling constraints between the ground and the two wheels are considered in the dynamical equations of the system. For each wheel, two nonholonomic and two holonomic constraints are introduced in a set of differential-algebraic equations (DAE). The constraint Jacobian matrix is obtained by collecting all the constraint equations and converting them into the velocity form. Equilibrium, an algorithm for searching for equilibrium points of two-wheeled vehicles and the associated problems are discussed. Formulae for calculating the radii of curvatures of ground-wheel contact paths and the reference point are also given.

Subsystem Synthesis Methods with Independent Coordinates for Real-Time Multibody Dynamics

  • Kim Sung-Soo;Wang Ji-Hyeun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.312-319
    • /
    • 2005
  • For real time dynamic simulation, two different subsystem synthesis methods with independent generalized coordinates have been developed and compared. In each formulation, the subsystem equations of motion are generated in terms of independent generalized coordinates. The first formulation is based on the relative Cartesian coordinates with respect to moving subsystem base body. The second formulation is based on the relative joint coordinates using recursive formulation. Computational efficiency of the formulations has been compared theoretically by the arithmetic operational counts. In order to verify real-time capability of the formulations, bump run simulations of a quarter car model with SLA suspension subsystem have been carried out to measure the actual CPU time.

Matching of Physical Experiments and Multibody Dynamic Simulation for Large Deformation Problems

  • Yoo, Wan-Suk;Lee, Jeong-Han;Sohn, Jeong-Hyun;Park, Su-Jin;Oleg Dmitrochenko;Dmitri Pogorelov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.742-752
    • /
    • 2004
  • Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations because the simulation results could not be matched without correct input data such as material properties and damping effects. In this paper, these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two examples, a thin cantilevers beam and a thin plate, are studied to verify whether the simulation results are well matched to experimental results.