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Turning Dynamics and Equilibrium of Two-Wheeled Vehicles

Chih-Keng Chen*, Thanh-Son Dae, Chih-Kai Yang
Department of Mechanical and Automation Engineering, Da-Yeh University,
112 Shan-Jiau Rd., Changhua, Taiwan 515 ROC

The equations of motion of two-wheeled vehicles, e.g. bicycles or motorcycles, are developed

by using Lagrange’s equations for quasi-coordinates. The pure rolling constraints between the

ground and the two wheels are considered in the dynamical equations of the system. For each

wheel, two nonholonomic and two holonomic constraints are introduced in a set of differential-

algebraic equations (DAE). The constraint Jacobian matrix is obtained by collecting all the

constraint equations and converting them into the velocity form. Equilibrium, an algorithm for

searching for equilibrium points of two-wheeled vehicles and the associated problems are

discussed. Formulae for calculating the radii of curvatures of ground-wheel contact paths and

the reference point are also given.
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1. Introduction

Due to the challenges in fully understanding
their dynamics and stabilization, two-wheeled
vehicles have been attracting a considerable con-
cern from a number of researchers in the fields
of physics, automation and control. Alleyne et
al. (1997) provided both simulation and experi-
mental views at lateral vehicle dynamics for au-
tomatic steering control. Beznos et al.(1998) mo-
deled a bicycle with gyroscopes that enabled the
vehicle to stabilize itself on an autonomous mo-
tion along a straight line as well as along a curve.
In their study, the stabilization unit consisted of
two coupled gyroscopes spinning in opposite di-
rections. Chen et al.(1998) provided an approach
to decoupling the yaw motion from the lateral
motion by using yaw rate feedback. Feng et al.
(1998) applied H. theory and a three-degree-
of-freedom (DOF) model for synthesis of ro-
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bust steering controllers for a bicycle. Getz et al.
(1993 ; 1995) derived a controller using steering
and rear-wheel torques to make their unmanned
bicycle maintain its balance, and, when the steer-
ing angle and rear-wheel velocities are non-zero,
designed a feedback control method to control
the bicycle to track arbitrary smooth trajectories
with nonholonomic constraints and nonmini-
mum phases. Discussions about internal equilib-
rium control applied to the path-tracking with
balance using steering and rear-wheel torques as
inputs were also given. Yao et al.(1994) present-
ed a kinetic-model-based algorithm for estima-
ting some unstabilized components in vehicular
motion. In a study of Suryanaryanan et al. (2002),
the system dynamics and automated roll-rate con-
trol of front and rear-wheel steered bicycles were
proposed. Yavin (1997 : 1999) dealt with the sta-
bilization and control of a riderless bicycle by
using a pedalling torque, a directional torque and
a rotor mounted on the crossbar that generated a
tilting torque. In another study (Indiveri, 1999), a
closed loop, time-invariant and globally stable
control law for a bicycle-like kinematic model
was introduced. Lee et al.(2002) built a simple
kinematic and dynamic formulation of an un-
manned electric bicycle with a load mass balance
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system. He also proposed a control algorithm for
self-stabilization using nonlinear control and
then, implemented simulations of straight driving
and turning of vehicular motions.

Most previous studies dealt with simplified ma-
thematical models of two-wheeled vehicles which
then were used to implement simulations, analy-
sis and experiments. However, due to their sim-
plicity, the mathematical models were unable to
present all of the dynamic motions of the sys-
tem in some situations. With that in mind, we
approach by modeling a two-wheeled vehicle as
a nine DOF system in three-dimensional space by
using Lagrange’s equations for quasi-coordinates.
Also, the constraints equations are derived from
wheel-ground contact conditions.

This paper is organized as follows : In Section
2, the nine DOF model describing the motion of
two-wheeled vehicles is obtained by Lagrange’s
method. Constraint conditions between wheels
and the ground are discussed in Section 3. Sec-
tion 4 deals with equilibrium of two-wheeled
vehicles and introduces a strategy for equilibrium
points search, along with some selected numerical
results. Formulae for calculating the radii of cur-
vatures of ground-wheel contact paths and the
reference point are also given. In Section 5 are
some concluding remarks.

2. Three-Dimensional Two-Wheeled
Vehicle Model

In this section, the compact equations of mo-
tion with nine degrees of freedom are develop-
ed to describe the dynamics of two-wheeled ve-
hicles. The equations discussed here are develop-
ed by Lagrange’s equations for quasi~coordinates
(Baruh, 1999).

2.1 Coordinate systems

The schematic of a typical two-wheeled ve-
hicle model is shown in Fig. 1. Let the upper-
case letters A. B, D and F represent the vehicle
body, the rear wheel, the front wheel and the
fork, respectively, while the lowercase ones a,
b, d, and f are used to designate the center of
mass of each part. Reference point ¢ is between

(b)

Fig. 1 Two-wheeled vehicle model

the saddle and the vehicle body; ¢ is a point
between the vehicle body and the front fork ; ¢
and s are the contact points between the ground
and the rear and front wheels, respectively.
There are three SAE-standard coordinate sys-
tems used in the model: (1) an inertial frame
I,{1, J, K) fixed on the ground, (2) a reference
frame I:(ic, je, ke) mounted on the model at
point ¢, and (3) a frame I (i., je, ke) placed on
the front fork at point e. The coordinate I is
obtained by rotating about I a rake angle &
and a steering angle § as shown in Fig. 1. In this
paper the dynamics of two-wheeled vehicles is
described by the motion of the reference point c.
Six coordinates are used to designate the posi-
tions and orientations of point ¢. The other three
coordinate variables are the rotating angles of the
front and rear wheels and the steering angle of the
front fork. According to the foregoing definitions,
the generalized coordinates can be written as

q=[XYZ ¢ 63 ¢r 1"

where (X, Y, Z) are the position parameters and



Turning Dynamics and Equilibrium of Two- W heeled Vehicles 379

(¢, ¢, 6) are the three Euler angles, which des-
cribe the relative position and orientation be-
tween the coordinates I and I,. § is the steering
angle; ¢, and ¢, are the rotating angles of the
front and rear wheels, respectively. The velocity
vector is

llz[Ux Uy Uz Wx Wy Wz 6 QSTa éf]r

whose components are quasi-velocities (genera-
lized speeds) .

2.2 Dynamics of the nine DOF model

For simplicity, the position, velocity and angu-
lar velocity vectors of body M in frame I, will
be denoted by r¥%, v and wj respectively. One
can write the position vector of point ¢ in I, as
r?=[X Y Z]7. Let the position vectors of the
centers of mass of the vehicle body, rear wheel
and point e relative to point ¢ as Q4 Ps and .,
respectively. That is, p5=[x, 0 2.]7, p¢=[x, 0
b,]T and pé=[x, 0 2|7 in I In a similar
fashion, the position vectors o, and pg4 of the
centers of mass of the fork and the front wheel
relative to point e are expressed in [, as pi=
[x70 2,]7 and p5=[xq 0 24]7.

One can write the position vectors of the centers
of mass of each part in I, as

ro=ri+R7po§

rg=r¢+R708
rg=r¢+R7(05+Ré0%)
ri=r2+R7(ps+RL 0%

(1)

where R and R, are the rotation matrices from
I, to I and from I¢ to I, respectively. These
two matrices are as follows

€08 ¥ o8 ¢ sin ¥ cos ¢ —sin ¢
R=| -sinycosf+cosysing cos ¢ cos f+sin ¥ sinfsing cos ¢siné
sin ¢ sin f+cos V/gin cos § —cos ¢ sin f+sin ¢ sin ¢ cos  cos f cos ¢

and

[ cos 8 sind 0][cos e 0 —sin €]
Ree=| —sind cos 6 0 0 1 o0

0 0 1|/sine 0 cosce |
[ cos §cose sind —cos Ssin €]
=|—sindcos e cosd sindsine
sin & 0 cos &

The relative rotation from [, to ¢ is determined
by the 3-2-1 Euler angles ¢=[y¢ ¢ 8]7.

The angular velocities of the vehicle body and
the rear wheel are written in [ as

wi=[ox vy 07 2
WE=wi+ wfa= [wx (1)y"'¢'r, (l)z]T

where @§4=[0 —d, 0]7 is the angular velocity
of the rear wheel relative to the vehicle body.
The vehicle body’s angular velocities w;, wy and
wx are referred to as yaw, pitch and roll rates,
respectively. The angular velocities are related
to the time rates of the three Euler angles by the
formula

0)A=S¢

—sin ¢ 0 1
where S=| cos ¢sind cos 8 0f.
cos fcos ¢ —sinf 0
The angular velocities of the fork and the front
wheel can be expressed in I, as

wf=Rc.wi+ wﬁ‘/A
(3)

0= 0f @5r =Reewf+ wfa0bF
where @§4=[0 0 §]7 is the angular velocity of
the fork relative to the vehicle body and wfr=
[0°—¢; 0]7 is the angular velocity of the front
wheel relative to the fork.

Denote the - velocity vector of point ¢ by v,
one has vi=[v, vy 0.]7. The velocities of all
parts of the vehicle are expressed as

vi=vitws X s
vEi=Vvit+wi X pf
vi=vitwiX ¢+ RE(wf X 08)
vi=vi+ i X pi+RE(wf X 05)

(4)

The kinetic energy of each part can be written in
terms of centers of mass motion as

Ta=ma(v9) "V5+ () L

TB:%mb (Vg) Tvg +%(0)§) TIB(DLC?

Tp=%mf (v%) Tv?-f-%(wﬁ) Tref

To=5ma(v9) "Vit3 (05) Toah
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Table 1 Simulation parameters of a two-wheeled

vehicle
(a)
Name Value Name Value
Ma 11.05(kg) Mo 2.09(kg)
Ma 3.92(kg) my 4.04(kg)

oo |(0.1296,0,0285) | p, [(—0.365, 0, 0.503)

Pa (0, 0, 0.601) pe |(—7.789, 0, 0.078)

ps |(0.017,0, 0.1083) 7 0.325(m)
g | 980665(m/s?) | e 15°
(b)
Moment of Inertia (kg+m®
Vehicle 0407 0 —0.068
Bkod I.= 1.934 0
o | 1.558 |
i 0 —0.025]
Front Fork I,=(04210.384 0
i 0.041 |
0109 0 0
I.= 0218 0
0.109
Wheels .
0204 O 0
Is= 0408 0O
0.204

where T4, T3, Tr and Tp are the kinetic energy
of the vehicle body, the rear wheel, the fork and
the front wheel, respectively; 14, Is, Ir and Ip
are the inertia matrices of each corresponding
body. Their values in our simulation are shown
in Table 1. The total kinetic energy is obtained
by summing all kinetic energy of all parts. By
substituting the velocities in Eqgs. (2), (3), (3)
into (5) gives

T=Tat Tot+ Tr+ TD=%uTJu

where J is the inertia matrix of the system.
The potential energy has the form
V=mgh
or,
V=—gi (mar+merg+mrs+mard)

where gz=[00 g]”.

The generalized velocities q are related to the
quasi-velocities u by

u=Yq or g=Wu (6)

where Y and W are the 9 X9 transform matrices
defined by

ROO RT 00
Y=|080|, W=Y"'=0 S'0
00I 0 01

and q=[X Y Z v ¢ 0 6 ¢, ¢/)".
Lagrange’s equations for quasi-coordinates can
be formulated as

oV

d (0T oT oT
2 ()5 —Ge WS W=UL (7)
aT T aT T T3
where e ul, ar < Su )—u J+u'J, and

Une=WTQ.c are non-conservative forces. The
coefficient matrix A is

se(1-go-( 4 -
where 5 — au l:g; sy g—;g}

One can rewrlte Eq. (2) in the standard form of
differential equations as

Ja=—Ju— A’Ju+WT<%£> WT<%Z> +U

or simply,

Ju=Q (8)
3. Constraint Conditions for Wheels

In the two-wheeled vehicle model, the contact
relationships between the two wheels and the
ground are assumed to have the properties of
rolling without slipping. The constraint equations
for the rear and the front wheels are correspon-
dingly developed as follows.

3.1 Rear wheel

Fig. 2 shows the schematic of the rear wheel.
Let R, be the position vector of contact point o’
relative to the center of mass b of the rear wheel.
The position of the contact point 0 is
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Fig. 2 Schematic of rear wheel

ro’=rb + Rr (9)

Express Eq. (9) in I, and note that the contact
point ¢’ is on the ground. The K component of
ro is zero. This leads to a holonomic constraint

Z—sin ¢{x,—» sin a,)

+cos ¢ cos @(zs+ 7 cos ar) =0 (10)

where ar is the included angle between R, and
ke, 7 is the radius of the two wheels.

Furthermore, denote the intersecting vector be-
tween the ground and the rear wheel planes by
p?=1[x y 0], since it is on the I—J plare. By the
observation that p? is perpendicular to j, thei
r dot product is zero. That is

(Rp2) Tj.=x(cos ¢ sin @ sin §—sin ¢ cos §)
+y(sin ¢ sin ¢ sin §+cos ¥ cos §) (11)
=0

where j.=[0 1 0]7.
Equation (11) gives

— (sin ¢ sin ¢ sin §+cos ¢ cos )
€0s ¥ sin ¢sin #—sin ¢ cos & (12)
0

Similarly, p, and R, are perpendicular. By equa-
ting pr-R, (with p, given in Eq. (12)) to zero
yields another holonomic constraint including the
e€xtra parameter @r

cos ¢ cos @ sin ar—sin ¢ cos ar=0 (13)

To find the nonholonomic constraint equations,
we write the velocity of contact point ¢ as

Vo=VstVoys

where Vp,=v.+wsX0s and Vos=R,. Vector
Vo can be expressed in I, as

vo=vi+ (Rﬁ) ret+ WE XRF

14)
= [Uu’x U?'y Uo’z] T (

Assume that the wheel rolls without slipping, that
is v5=0. In I,, v, can be written as

Vg’ZRTVg’: [Uo’x’ Vory ya’z’] T=0 (15)
where

Vorx=— Ua’x(COS V/ [0 ¢>
+ vory(cos ¥ sin ¢ sin f—sin ¢ cos §) (16)
+voz(cos ¥ sin ¢ cos §+sin ¥ sin §)

Z)o'yzl)o’x(Sii'l 7// Cos ¢)
+voy{sin ¢ sin ¢ sin §+cos ¢ cos ) (i7)
+ vz (sin ¥ sin ¢ cos @+cos ¥ sin §)

Vorwr=—Vorx SIN ¢+ 00, cOS ¢ sin &
+ 0oz COS ¢ cos 0

(18)

It appears that the constraint v,=0 is proved
to be an integrable equation, which can be obtain-
ed by differentiating Eqs. (10) and (13). There-
fore, Eq. (18) is trivial since it is only a veloci-
ty form of the holonomic constraint. Thus, from
Egs. (16) and (17) we only have two nonholono-
mic constraints

Vo {COS ¥ cos @) +very (cos ¥ sin ¢ sin —sin ¢ cos 8)
+ voz(cos ¥ sin ¢ cos §+sin ¢ sin §) =0

Vo (SIn ¥ €OS @) + 0oy (Sin ¢ sin ¢ sin @—cos ¥ cos 8)
+ 02 (sin ¥ sin ¢ cos +cos ¢ sin §) =0

3.2 Front wheel

The constraint conditions of the front wheel
can be obtained by the same procedures as those
used with the rear wheel. Vector R, is used to
designate the position of the center of mass d of
the wheel relative to the contact point s. The
position of the contact point s is

rs=rq+R, (19)

Writing Eq. (19) in I, and equating the K
component of rd to zero gives a holonomic con-
straint
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Z—1,5in ¢+ 2, 008 ¢ cos f+24(—sin ¢ sin e+cos ¢ cos § cos ¢)

+x4(—sin ¢ cos & cos e+cos ¢ sin §sin d—cos ¢ cos 6 cos G sin &)

+7in a5{~cos ¢ sin Asin $+cos ¢ (20)
+oos ¢ cos § cos 8 sin e+sin ¢ cos 8 cos &)

+7 cos ay(—sin ¢ sin e+cos ¢ cos § cos €) =0

where ay is the included angle between Ry and k..

The intersecting vector between the ground and
the front wheel planes, py, can be obtained by
equating ps-je to zero, that gives

X
B={y

{

(s 8{sin ¢ sin gsin +cos o ) —sin ¢ cos gsin & cos ¢ (21)

+sin 8 sin e{sin ¢ sin ¢ cos §—cos ¥ sin §)
=1 cos 8{o0s ¥ sin dsin f—sin  cos ) —cos  cos $sin & oos €
+sin &'sin elcos ¢ sin ¢ cos §+sin ¢ sin §)
0

Another holonomic constraint can be found by
performing py-R,=0. That gives

{cos ¢ sin f sin 8—cos ¢ cos 6 cos dsin &
-sin ¢ cos & cos €) cos ar (22)
+ (cos ¢ cos 8 cos e—sin ¢ sin &) sin a,=0

To find the nonholonomic constraints of the front
wheel, we express the velocity of the contact point
s as follows

Vs=Ve + Vdfe + Vsid

where Vo=Vt @aX P¢, Vaje™= Wr X P, and Vg q=
Ry, Vector vs can be written in 7. as

vi=vitwioi+RE(wé X5
+ (R)e‘) rel+RcTe((l)g+R;) (23)
= [Vxx Usy Usz] T

With the assumption of non-slip rolling of the
wheel and zero-velocity motion of the contact
point s, one has v§=0. Furthermore, in I%, Eq.
(23) becomes

Vg=RTV§= [st’ Usy Usz’] T
where

Vsxr=Usx COS ¥ COS ¢
+vsy{cos ¥ sin ¢ sin @ —sin ¥ cos 8) (24)
~+ vz (cos ¥ sin ¢ cos @+sin ¢ sin &)

Vey = Usx SIN ¥ COS ¢
+ vsy(sin sin ¢ sin 8+cos ¥ cos §)  (25)
+ vs(sin ¥ sin ¢ cos §+cos ¢ sin )

Vszr = —Usx SIN @+ vsy COS P sin O

+ vsz cOS @ cos O (26)

It is also proved that Eq. (26) can be obtained by
differentiating Eqgs. (20) and (22). Hence, Egs.
(24) and (25) give two nonholonomic constraints

Vex COS ¥ cos ¢+ vsy(cos ¥ sin ¢ sin §—sin ¢ cos 6)
+vs:(cos ¥ sin ¢ cos §+sin ¢ sin ) =0

Vsx SIN ¥ cos ¢+ vy (sin ¥ sin ¢ sin G-+cos ¢ cos §)
+ s (sin ¢ sin ¢ cos @ —cos ¥ sin §) =0

3.3 Constraint Jacobian matrix

As a result, eight constraints are obtained in
Eqs. (10), (13), (16), (17), (20}, (22), (24) and
(25). Among these, there are four holonomic
and four nonholonomic constraints. To derive the
constraint equations, two algebraic variables, ar
and ay, were introduced. Hence, the generalized
coordinate and quasi-velocity vectors are expand-
ed to

a.=[XYZ V¢3S0 ¢rarar]”
U=[vx vy Uz @x Wy @z 8 ¢r ds &tr @r]7

Differentiate all the holonomic constraints to
yield the velocity form, which with other non-
holonomic constraints can be written as

BU=0 (27)

where B is an 8 X 11 matrix, referred to as con-
straint Jacobian matrix. The equations of motion
with constraint conditions now become

QezweU
J.U=Q.+r—B"A (28)
BU=0

where We=|0 1 0| is an

0 01

11 X11 matrix,

JO0OO
Je=[0 0 0| is an 11X11 generalized mass
000

Q

matrix, Q.= 1 0
0

is vector of applied forces, A
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represents the eight Lagrange multipliers or con-
straint forces coupled to the system by the 8 X 11
constraint Jacobian matrix B, and z is the gener-
alized nonconservative force vector.

4. Equilibrium of Two-Wheeled
Vehicles

Equilibrium is an essential and very useful
concept in dynamics. For a multibody dynamic
system, equilibrium is defined as the state when
the total force acting on the system is zero (Baruh,
1999). For a two-wheeled vehicle system, equi-
librium is necessary to understand its interesting
dynamic behaviors and to control the vehicle to
follow a given circular path or a straight line.

This section discusses an important question
coming to mind when dealing with the equilibri-
um of two-wheeled vehicles on : How to calculate
the equilibrium points of two-wheeled vehicles’
dynamics.

4.1 Equilibrium points searching strategy

To calculate the equilibrium points of a two-
wheeled vehicle system one can utilize the con-
straint equations to compute the state variables
when the system is at equilibrium. Equation (28)
suggests that

JeU:Qe‘I'f_BTR (29)

Practice shows that only the steering torque is
needed to control the vehicle to an equilibrium
point. Therefore, in the force vector 7, only the
seventh element, the steering torque 75 is nonzero
is necessary. That is 7==[0, ---, 0, 7, 0, ---, 0]".
Two-wheeled vehicle dynamics and the com-
putation of constraint equations are implemented
in numerical simulations. In order to eliminate
the Lagrange multipliers in the constraint equa-
tions, Eq. (29) is multiplied by the orthogonal
complement of matrix B, matrix T, so that TB”=
0. Equation (29) thus becomes

TJ.U=TQ.+Tr (30)

It is clear that all the state variables must satisfy
the constraint equations. However, it appears that
the constraint equations are independent of the

variables X, Y, ¢, ¢rand ¢, ; and at equilibrium
state : 3=dr=df=O. Therefore, there are still
fourteen among totally twénty—two state variables
to be determined. The four holonomic constraints
in Egs. (10}, (13), (20) and (22) can be derived
to yield their time rates, which are also constraint
equations. Hence, there are totally twelve con-
straint equations.

The Newton’s second law can be used to cal-
culate the equilibrium points of the system by
setting the acceleration term in Eq. (30) to zero.
The constraint condition thus is defined as

TQ.+Tz=0 (31)

The searching steps for equilibrium points then
can be summarized as follows

(1) Given 6, change the value of vy in a cer-
tain range, e.g., vo<vx=<v;. For each pair of
(6, vx), solve for all the state variables and
calculate the two matrices B and Q..

(2) Compute the orthogonal complement ma-
trix T from B : there are a number of methods to
calculate T, the Pseudo Upper Triangular De-
composition Method (Amirouche, 1992) is one of
them.

(3) Verify whether Eq. (31) is satisfied.

Simulation results show that, even at equili-
brium state, there still exists a small amount of
steering torque 7 to maintain the vehicle’s stabi-
lization. It is reasonable because this torque is
necessary to counteract the self-aligning torque,
which tends to align the wheel plane with the
direction of motion when the angles @, and a,
are nonzero.

Fig. 3 Schematic of front wheel
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The searching results are selectively shown in
Table 2. These are unstable equilibrium points,
that is, when the vehicle moves away from an
equilibrium state, it never returns without a con-
troller. Fig. 7 shows the relationship between vx
and the steering angle & when the vehicle is at
equilibrium with constant & angles. Fig. 7 in-
dicates that with a constant &, § decreases when
vx increases. At high speeds, the change in the
slope of the curves is much milder than it is at
low speeds.

Table 2 Selected equilibrium points

Statfs(deg) 10 15 20 25
X (km/h)| NAC NAC NAC NAC
Y (km/h)] NAC | NAC | NAC | NAC
Z (km/h) 0 0 0 0
ve (km/h)| 10283 | 9.552 8.371 6.611
vy (km/h)| 0.750 1.168 1.568 2.065
v: (km/h)| —0.167 | —0.373 | —0.657 | —1.065
¢ (rad/s) | 0.581 0.906 1.291 1.798
$ (rad/s) 0 0 0 0
9 (rad/s) 0 0 0 0
8 (rad/s) 0 0 0 0
¢, (rad/s)| —9.051 | ~8.772 | —8.289 | —7.608
¢y (rad/s)| —9.390 | —9.574 | —10.148 | —11.085
o, (rad/s) 0 0 0 0
ar (rad/s) 0 0 0 0
X (m) | NAC | NAC | NAC | NAC
Y(m) | NAC | NAC | NAC | NAC
Z(m) | —0813 | —0.796 | —0.774 | —0.747
¥ (deg) | NAC | NAC | NAC | NAC
# (deg) | —0.175 | —0.329 | —0.424 | —0.562
0 (deg) 10 15 20 25
& (deg) | 14739 | 22542 | 31.157 | 41.731
$- (deg) | NAC | NAC | NAC | NAC
és (deg) | NAC | NAC | NAC | NAC
ar (deg) | —0.178 | —0.341 | —0.452 | —0.366
ar (deg) | 11787 | 7.615 1.450 | —7.355
zs (N-m) | —0.0931 | —0.0745 | —0.0201 | —0.0010
R. (m) | 49418 | 29514 | 1.8459 | 1.0745

NAC stands for “Not a constant”.

4.2 Radii of curvatures

Fig. 4 shows a trajectory of the vehicle at an
equilibrium point. This trajectory is a circular
path. Simply by using geometric relationships, the
radius of any trajectory of two-wheeled vehicles
can be computed.

Let o', s be the contact points of the rear and
the front wheels with the ground, respectively,
and ¢ be the reference point, as shown in Fig. 1
(b). The radii of curvatures of points ¢/, s and ¢

" of the given two-wheeled vehicle system at any

position are diagrammatized in Fig. 5. It ap-
pears that these three points are on three different

X m)

Y {m}
Trajectory of two-wheeled vehicle at equi-
librium

Fig. 5 Radii of curvatures
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curvatures, but share one common center, this
point is designated by O* in Fig. 5. Let &, be
the projection of the steering angle & on the
ground. This leads to

pr'Dr > (32)

dp=sign dXcos™* <
|p- | XD/

where p, and p, are the intersecting vectors of
the ground with the rear and the front wheel
planes, respectively, as shown in Fig. 2 and Fig. 3.

In Fig. 5, let A be the contact point of the
rear wheel with the ground when =0, B be the
intersection of the extended line of the fork with
the ground. Let 4.>0 be the distance from the
reference point ¢ to the ground when §=0. One
has

L=AB=—xp+x.+{hc—z.)tan ¢ (33)

where ¢ is the rake angle of the fork and 7 is
the radius of the two wheels. Their values are
given in Table 1. One should note that x, and x.
are negative constants.

The distance from o" to B is given by

L,=¢B=L+7sina, (34)
and the distance from s to B is
Ly=sB=vsin ar (35)

From Fig. 6, the radius of curvature of point ¢’ on
the rear wheel thus can be formulated as

L.— L, L+7sinar—r S0
o= oS 8y _ C0S Op (36)
4 tan & tan

the radius of curvature of point s on the front
wheel

Fig. 6 Determine R, and Ry

_ Ly
_ " cos 6
Rf_—Sil’l é\p ‘|‘Lf tan 61; (37)
sin ay

L+7rsinar—r s 8
? 1y sin g, tan &

sin 6p

and the radius of curvature of the reference

point ¢
R _ Rr_hc Sil’l (9
‘ cos{tan ~ e
[tan 1( - 9)}
_ Rr_hc sin Sgln (38>
cos [tan_l<%il—}z;;l—£grﬂ

where [*=—x,+7 sin a.
The relationship between vy, ¢ and K. when
the vehicle is at equilibrium is plotted in Fig. 8.
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Fig. 8 Relationship between vy, § and R,
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It can be seen that the radius R, seems to be
dependent on the steering angle only, the velocity
vx has very little effect on R.. It is what we ex-
pected, because the radii of curvatures of the
vehicle are only dependent on the steering angle §
and the roll angle §, which are proved in Egs.
(36), (37) and (38). A change in vy can lead to
a change in 4, but § does not influence R. very
much.

5. Conclusions

In this paper, a nine DOF dynamic model of
two-wheeled vehicles is developed using Lagr-
ange’s equations for quasi-coordinates. Consider-
ing the contact relationship between the wheels
and the ground surface, the constraint conditions,
including four holonomic and four nonholono-
mic constraints, can be derived. By combining the
nonholonomic constraints and the velocity forms
of holonomic constraints, the constraint Jacobian
matrix can be obtained. With the developed equa-
tions of motion and constraints, the equilibrium
of two-wheeled vehicles can be fully investigat-
ed. The dynamic model in this study provides
a fundamental in understanding the interesting
dynamic behaviors of two-wheeled vehicles. With
this model, one can also implement simulations,
design controllers and do experiments.
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