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Subsystem Synthesis Methods with Independent Coordinates
for Real-Time Multibody Dynamics
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For real time dynamic simulation, two different subsystem synthesis methods with indepen-

dent generalized coordinates have been developed and compared. In each formulation, the

subsystem equations of motion are generated in terms of independent generalized coordinates.
The first formulation is based on the relative Cartesian coordinates with respect to moving
subsystem base body. The second formulation is based on the relative joint coordinates using
recursive formulation. Computational efficiency of the formulations has been compared theo-

retically by the arithmetic operational counts. In order to verify real~time capability of the

formulations, bump run simulations of a quarter car model with SLA suspension subsystem

have been carried out to measure the actual CPU time.

Key Words : Realtime Dynamic Simulation, Subsystem Synthesis Method

1. Introduction

Realtime dynamic formulations for niultibody
systems are essential for hardware-in-the loop
simulations or operator-in-the loop simulations.
Especially, for multibody systems with identical
independent subsystems, the subsystem synthesis
method has been proposed (Kim, 2002). In the
method, equations of motion for subsystems and
the base body equations of motion are formed
separately for efficient computation. For example,
in the case of full vehicle model with 4 inde-
pendent suspension subsystems, the method has
been proved to be more than 4 times faster than
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the conventional method, since the method deals
with several smaller size equations of motion (Oh
and Kim, 2001).

There are two distinct coordinate systems nor-
mally used in the multibody dynamics formula-
tions ; one is Cartesian coordinate system and
the other is relative joint coordinate system. In
the Cartesian coordinate formulations, equations
of motions are formed for each body, and con-
straint equations are systematically imposed for
connections of bodies. Consequently, these for-
mulations lead to general algorithms with easy
implementation. However, they must deal with
large size of DAE (Differential Algebraic Equa-
tions). Although these kinds of formulations are
not efficient for serial computations, they have
potential for body by body parallel computation.
On the other hand, in the relative coordinate for-
mulations, topological information of the system
must be used. Velocity transformation from the
Cartesian to relative joint velocities is applied
recursively along branches of the topological tree
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structures {Tsai and Haug, 1989). These formula-
tions are difficult to generalize. However, they
are efficient, because they deal with the minimum
number of generalized coordinates and constraint
equations.

In this paper, two different subsystem synthesis
methods with independent generalized coordina-
tes are developed and compared to investigate the
effectiveness and efficiency for the realtime si-
mulations of multibody systems. As for the first
formulation, a relative Cartesian coordinate for-
mulation is proposed for subsystem equations
of motion. To increase computational efficiency,
additional independent coordinates are introduc-
ed and the subsystem equations of motion in
terms of relative Cartesian coordinates are trans-
formed into those in terms of the introduced
independent coordinates. The reason to investi-
gate the relative Cartesian coordinate formula-
tion in this research is that the formulation has
implementation easiness and has potential for
parallel computations. As for the second formula-
tion, the subsystem synthesis method with relative
joint coordinates is investigated. Using genera-
lized coordinate partitioning method, subsystem
equations of motion are formed in terms of in-
dependent joint coordinates.

2. Overview of the Subsystem
Synthesis Method

A typical multibody model with n independent
subsystems is considered as shown in Fig. 1. A
subsystem consists of bodies, joints, and force
elements, and virtual base body which is the
reference body to define kinematic relationship
between bodies in the subsystem.

In the subsystem synthesis method, effective
mass matrix and force vector must be computed
first in each subsystem. The effective mass and
force, in fact, represent the dynamic effects due to
physical coupling between the subsystem and the
base body. With the effective mass matrices and
force vectors from each of the subsystems, the
following 6X6 matrix form of equations of
motion for the base body is obtained to solve for
accelerations.
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where M; and P; (i=1~n) are the effective
inertia matrix and the effective force vector of
each subsystem, respectively, and Y is the base
body acceleration, M, and Qo are the inertia
matrix and generalized force vector of the base
body, respectively. After solving for the base body
acceleration, the following subsystem equations
of motion can be solved for subsystem accelera-
tions.

P Ha R
@ 0 [|a] |~ (I

where { is the acceleration vectors represented
in the coordinate system used in the subsystems,
My, M7, and P, subsystem matrix and force
vector, respectively. @ is the constraint Jacobian
matrix in the subsystem, A is the Lagrange multi-
plier and 7 is the right hand side of the constraint

acceleration equations.
The subsystem synthesis method naturally pro-

. vides modular structure. Thus, as long as the

effective mass matrices and force vectors are gen-
erated, different multibody dynamics formula-
tions of a subsystem module can be easily im-
plemented. In following sections, two different
formulations with independent coordinates are
presented for the subsystem synthesis method to
investigate their effectiveness and efficiency. One
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is based on relative Cartesian coordinates and the
other is based on relative joint coordinates.

3. Relative Cartesian
Coordinate Formulation

3.1 Kinematics in terms of relative Car-

tesian coordinates

In order to derive subsystem equations of mo-
tion separately, motions of the bodies in the sub-
system must be expressed with respect to the
virtual reference body in Fig. 1. For this purpose,
relative Cartesian coordinates are employed as
shown in Fig. 2.

X-Y-Z reference frame represents the inertial
reference frame, x'-y’-z’ frames represent the body
fixed reference frame, and x¢-ys-zd frame re-
presents the fixed reference frame of the body 0,
which is moving with respect to the inertia refer-
ence frame. The orientation of the body 7 refer-
ence frame with respect to the inertial reference
frame can be represented by the following se-
quence of coordinate transformation matrices ;

Ai:AoAig (3)

where A; is the orientation matrix of the body ¢,
A, is the orientation matrix of the virtual refer-
ence body 0, and A » is the relative orientation of
the body ¢ with respect to body 0. The position
vector r; of the body 7 can be written as ;

r;=ro+ Aol (4)

Fig. 2 Relative cartesian coordinate kinematics

where ro is the position vector of the virtual
reference body 0 and r}, is the relative position
vector of the body with respect to the body 0, and
it is represented in x§-yo-zs reference frame.
Angular velocity of the body 7 can be re-
presented in terms of the angular velocity of the
virtual reference body O and the relative angular
velocity of body 7 with respect to body 0 as;

wi=Alhw 0 (5)

where @; is the angular velocity vector of the
body i, represented in the body 7 reference frame,
@ is the angular velocity of the body 0, re-
presented in body O reference frame, and wj, is
the relative angular velocity of the body ¢ with
respect to body 0, represented in body ¢ reference
frame. Velocity of the body 7 is obtained by dif-

ferentiating Eq. (5) with respect to time as ;
I:i=ro+Aoc@irfo (6)

where T, is the velocity of the body i, ¥¢ is the
velocity of the virtual reference body 0, 1'% is the
relative Cartesian velocity vector of the body
with respect to body 0. In order to have more
compact form of the equations, the composite
velocity vector y;=[17, @!]7, yo=[r%, 0i]",
vo=[1{, ws™]T are employed. Then, the follow-
ing composite velocity relationship is obtained.

Yi=EiOYO+GoYi0 (7)
I — Aor} A0
where EiOE[O A%) O:I and GOE[ 00 I]'

The acceleration relationship between body 7
and the virtual reference body O is obtained by
differentiating Eq. (7) with respect to time as ;

Yi:EiOYO+GoS’io+hio (8)

A& @srit+2A003T Y
where h,o=

-, ] is the veloc-
@; Wio

ity coupling term.

3.2 Subsystem equations of motion using
relative Cartesian coordinate formula-
tion

Variational form of the subsystem equations of

motion can be obtained by summation of the
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virtual work form of the D’Alembert equations
of the bodies in the subsystem.

82"{M, y—g}=0 ©)
where 6z is composite virtual displacement and
virtual rotation vector of all the bodies in a sub-
system, 37 is the composite acceleration of all the
bodies in a subsystem and M is the block dia-
gonal constant mass and inertia matrix of a sub-
system, and g is the generalized composite force
vector acting on all the bodies in a subsystem.

The virtual displacement relationship between
all the bodies and the reference body 0 in a sub-
system can be obtained as

aiin08ZO+G082i0 (10>

The acceleration relationship between all the bo-
dies and the reference body 0 in a subsystem is
obtained as ;

y=E¥o+Go¥o+hio (11)

In order to transform the equations of motion in

Eq. (9) into the equations of motion in terms of

relative Cartesian coordinates, substituting Eq.

(10) and Eq. (11) into Eq. (9) yields following
equations of motion ;

0z8{ MEEYO+MEG§’ —g5}

R, b _ 12
+ 8z MEcyo+Mecyio— 8¢} =0 (12

where, the virtual displacement §Z; is kinema-
tically admissible. In the subsystem, bodies are
connected with joints. Therefore, relative Car-
tesian coordinates must be satisfied constraint
equations from kinematic joints in a subsystem
as;

@(rfoAlo, T I‘;boAnw) =0 (13)

For real-time simulation, it is desirable to ge-
nerate equations in terms of only independent ge-
neralized coordinates, because it produces ODE
form of equations of motion. To select indepen-
dent generalized coordinates, the generalized co-
ordinate partitioning method (Haug, 1992) can
be used as an application of the implicit func-
tion theorem. However, in the relative Cartesian
coordinate system, a set of independent coordi-
nates can have to be often changed during simu-
lations, according to the configuration of the

subsystem. As for the numerical analysis point
of view, it is desirable to select different set of
independent coordinates in the subsystem, which
remain as independent coordinates in entire si-
mulation. Thus, it is preferable to introduce new
set of independent generalized coordinates as
many as the same number of degrees of freedom
(called ndof) in the subsystem. Then, there must
be ndof constraint equations which make rela-
tionships between relative Cartesian coordinates
and newly introduced independent generalized
coordinates. Now, the constraint equations asso-
ciated with the subsystem are as follows ;

@(rfoAlo, Tt r;bOAnw)

= = 14
v [F(rfoAlo, Tty r:bOAnbO, 0)] 0 ( )

where I is the ndof constraint equations, and 8
is the new set of independent coordinate vector.
Taking variation of the above constraint equa-
tions yields

U =3,0z:0+ ¥d8=0 (15)

where &6 is the variation of the independent
generalized coordinates. Constraint acceleration
equations can be obtained by differentiating Eq.
(14) twice with respect to time.

Q/‘zioiiﬁ qfoéf =0 (16)

where $=— (¥, §:0+ ¥6). From Eq. (15), vir-
tual displacement vector of the relative Cartesian
coordinate can be represented in terms of varia-
tion of the independent generalized coordinates
as

0zi0=—Ws,, ¥e00=N56 (17)

Similarly, acceleration in relative Cartesian coor-
dinates can be expressed in terms of acceleration
of the independent generalized coordinates as

Vio=—Ts W0+ U:!9=Nb+p  (13)
In order to derive subsystem equations of motion
in terms of independent generalized coordinates,
substituting Eq. (17) and Eq. (18) into Eq. (12)
yields

028 { Meeyo+Mpsl —8x )

+867{ ME§o+ Moo —go} =0 (19)
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where Mgo=MgcN, Mos=N"MccN, gr=gr—
Meep, 26=N7(gc—Mcep). Since variations of
independent generalized coordinates are arbitra-
ry, subsystem equations of motion is obtained as

=M (go—MEsy0) (20)
In order to complete subsystem synthesis method
using independent generalized coordinate for-
mulation, effective mass matrix and force vectors

described in Section 2 can be obtained by sub-
stituting Eq. (20) into Eq. (19) as,
MC-_—MEE_MEeMEeIMga (21)
g°=gr—MzMizigs (22)
It is noted that the dimension of matrix Mg is
ndof X ndof . If the number of degrees of free-
dom in the subsystem is one or two, the inversion
of matrix Mg, is not expensive. Once acceleration
of the independent generalized coordinates is

obtained, then the relative Cartesian coordinates
in the subsystem can computed using Eq. (18).

4. Relative Joint
Coordinate Formulations

4.1 Kinematics in terms of relative joint
coordinate
To define kinematics in terms of relative joint
coordinates in the subsystem, a pair of rigid bo-
dies is shown in Fig. 3.

Body 1

Fig. 3 A pair of connected bodies

The orientation of the body j reference frame
with respect to the inertial reference frame can be
represented by the following sequence of direction
cosine matrices.

A;=AC;A% (23)

where A; and A; are the orientation matrices of
the body i and j, respectively, C;; is the ortho-
gonal transformation matrix from the x7;— v, —
zi; frame to the x{—y;—z2 frame. A7 is the
orthogonal transformation matrix from the x;—
y;—z; frame to the x7; —yi;—z7; frame. The po-
sition vector r; of the body j can be written as ;

I‘j=ri+Sij+dij

=r,+Ass;+ACid%(q) 24

where r; is the position vector of the body j,
and the position vector s;; is the vector from the
origin of the body i reference frame O; to that of
the joint reference frame 0%, and the position
vector d;; is the vector from the origin of the joint
reference frame Q7; to that of the body j reference
frame Oj. It is noted that d;; is a function of
relative joint coordinate q;.

The compact form of velocity relationships be-
tween two bodies can be obtained, using the state

vector notation as (Tsai and Haug, 1989);
?J:Y1+qu1 (25)
where Y',- and Y'l- are the state vectors of bodies
i and j, respectively, and B, is the velocity trans-
formation matrix from the joint space to the state
vector space. The acceleration relationship be-

tween two bodies is obtained by differentiating
Eq. (24) as;

¥,=Y: 4B, +B;q,=Y.+Bsi,+D, (26)

Position, velocity, and acceleration relationship
can be applied recursively from the virtual refer-
ence body to the tree end bodies, if spanning tree
structure is formed by virtual cut of some joints in
the subsystem.

4.2 Subsystem equations of motion using

relative joint coordinate formulation
Different from the relative Cartesian coordi-
nate formulation, in the relative joint coordi-
nate formulation, only cut joint constraints are
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considered in the subsystem. If the virtual cut has
been made between body # and #’/, the cut joint
constraint equations can be expressed as a func-
tion of positions and orientations of body # and
n as;

D (rn, An, tw, Ap) =0 (27)

Using the Lagrange multiplier theorem (Haug,
1992), the variational equations of motion for the
closed loop subsystem are obtained in the state
vector space, as follows ;

SZOT (Mo§_ao> +282? (Mz‘?i——ai)
+0ZE @5, A+ 5107 (Y —-Q) (28)
+0ZE @ A=0

where 8Z; is the kinematically admissible gen-
eralized virtual displacements associated with the

state vector. M; and Q; are the state mass matrix .

and the state generalized force vector, respective-
ly. The first term of the Eq. (28) represents virtual
work form of equations of motion for the sub-
system virtual base body 0, the second and the
fourth terms represent the equations of motion of
the branches in the spanning tree of the sub-
system, and finally the third and fifth terms are
virtual work due to the constraint reaction forces
that are acting on body » and #’. If the recursive
formulation in the reference (Haug, 1992) is ap-
plied to branches of spanning tree and constraint
acceleration equations in terms of the joint space
is computed, the following subsystem equations of
motion are obtained, in terms of relative joint
coordinates and the base body coordinates.

Myy Myq 0 Y‘jo Py
qu qu ot ||l aq|= I—)q (29)
0 &3 O A 7

By eliminating the first equation from Eq. (29),
the subsystem equations of motion can be reduced
down as;

A

When the subsystem equations of motion are

expressed in terms of the relative joint coordi-
nates and unknown Lagrange multiplier as shown
in Eq. (30), the DAE form of the equations of
motion can be transformed into the ODE form of
the equations of motion. Different from the case
of the relative Cartesian coordinate formulation,
the Generalized Coordinate Partitioning (GCP)
technique can be used to select the independent
coordinates v from the relative joint coordinate
q in the subsystem, according to the implicit
function theorem (Huag, 1992). Then, the equa-
tions of motion in terms of independent coordi-
nates v can be obtained as;

M*v=Q;—Q;Y, (31)
i=0;'y— @' O,V (32)
where

M* ZMvu"2M0u<¢al¢‘7 )

+ (@51@\7 ) TMuu(d)glmV ) <33)

Qi=Po—Muw(07'7) — (05'@5)Pu .
+ (¢51¢\7 ) TMuu<¢gl77)

Q= (Myq,—M,q, @5 D3 ) 7 (35)

In order to complete the subsystem synthesis
method using independent joint coordinate for-
mulation, the effective mass matrix and force
vector mentioned in Section 2 can be obtained
by substituting Eq. (31) and (32) into the first
equation of Eq. (29).

M =M,,—Q3"(M*) "'} (36)
l\sczpy“myqu<¢5l77) _Q;T(M*) _IQZ (37)
After solving acceleration for independent coor-

dinate ¥ in Eq. (31), dependent coordinate acc-
eleration ii can be computed using Eq. (32).

5. A Quarter Car Model with a SLA
Suspension Subsystem

In order to investigate efficiency of three differ-
ent formulations described in previous sections, a
quarter car system with a SLA (short-long arm)
suspension is modeled as shown in Fig. 4.
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Fig. 4 A sla suspension subsystem

SLA suspension subsystem consist of a LCA
(Lower control arm), a UCA (Upper Control
Arm), a knuckle, and a tie rod. The LCA and the
UCA are connected to the chassis with revolute
joints, respectively. Spherical joints are used be-
tween the LCA and the knuckle and between
the UCA and the knuckle. A tie rod connects
the knuckle and the chassis. Since the mass and
moment of inertia of the tie-rod are relatively
small compared with other elements, the tie-rod is
modeled as a mass-less link.

To compare the computational efficiency, ari-
thmetic operators such as multiplication and ad-
dition are counted for the computations in the
subsystem module, since other computations in
different modules, such as chassis, tire, etc are the
same.

Table 1 shows the comparison between two for-
mulations for SLA suspension subsystem analy-
sis based on an arithmetic operational counting
method. M+D means number of multiplication
or division and A-S denotes number of addition
or subtraction operators. If the amount of CPU
time spent for single operation of multiplication
is the same as those for single operation of addi-
tion, then M-D and A-S can be added together
to compare operational counts for the different
formulations. Theoretical comparison shows that
efficient formulation is the independent coordi-
nate formulation with relative joint coordinates.
Although the formulation based on relative joint
coordinates is difficult to generalized, it is effi-
cient.

Table 1 Theoretical comparison of two formula-

tions
Formulations

Independent Generalized
with Relative with Relative

Com- Cartesian Joint
putations M:D A-S M-D A-S
Position 401 302 764 727
Velocity 414 302 290 220
RHS 245 196 127 194
Mass/Force 3,594 3,241 1,290 1,139
miif;;;:@ 25 24 177 | 160
Acceleration 49 42 311 292
Subtotal 4,728 4,107 2,959 2,732

Total 8,835 5,691

Ratio 1. 55 1

In order to verify the realtime simulation capa-
bility of the model using subsystem synthesis
method with independent coordinates, actual
CPU times are measured for the bump run si-
mulation. The bump run simulation of the quarter
car model has been carried out using Fortran90
program in the PC with Intel Pentium-I1V 1.6 Ghz
CPU and 256 Mb Ram. The half sine bump
with 0.5m width and 0.05m height was used.
The initial velocity of vehicle is 10 km/h. Adams
Bashforth 3" order integration method with 8.3
ms step-size was used.

Fig. 5 shows the results of bump run simu-
lations. There is small discrepancy. This might be
due to different input data to describe the same
suspension model. Essentially the identical results
are obtained from two different formulations with
independent coordinates. Table 2 shows CPU
time comparison between two formulations. As
shown in 3™ column of the table, both formu-
lations provide realtime capability. The relative
Cartesian coordinate formulation with indepen-
dent coordinates is 3.27 times slower than the
relative joint' coordinate formulation for actual
CPU time comparison, which is different from
the theoretical investigation. Such discrepancy
between actual CPU time measure and theoretical
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Table 2 CPU time spent for bump run simulation

Ratio of avera
Independent | Average CPU| Total CPU . verage
. . . CPU time of
coordinate | Time spent | Time to Real . .
. . on | Relative Cartesian
Formulation | (sec/frame) | Time (%) ) )
to Relative Joint
Relati
CAV 0 00100 12.04 327
Cartesian
Relati
S 0,000306 3.68 I
Joint
080 4
Ratative Joint
ess-4 e Retative Carte sian
080
GILECE
5
= B.70
8 s
% 056 | J
a8 Wi
080
0.55 <
050 . , .
0 & i
Time (sec)

Fig. 5 Vertical displacements of c.g. of the chassis in
bump run simulation

results is due to implementation of Fortan90 pro-
gram, since the CPU time is also dependent on the
number of argument variables in subroutine calls.

6. Conclusion

Two different formulations are investigated
based on the subsystem synthesis method with in-
dependent generalized coordiantes, for realtime
simulations of multibody systems. To compare
the theoretical efficiency of the formulations, a

quarter car model performance analysis has been
carried out by counting arithmetic operators in
the computations. Bump run simulations of the
quarter car model have been carried out to mea-
sure actual CPU time. According to the CPU
time results, The relative joint coordinate formu-
lation based on indepedent coordinates is about
3.27 times faster than the relative Cartesian coor-
dinates formualtion. However, the realtime si-
mulation has been achieved with both formula-
tions within about 12% of CPU time spent rela-
tive to the realtime. Thus, the relative Cartesian
coordinate formulation with additional indepen-
dent coordinates has also potential for realtime
simulations and at the same time it provides ge-
nerality and ease of implementation.
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