• Title/Summary/Keyword: Multi-level power converter

Search Result 127, Processing Time 0.024 seconds

A winding design of Tap Level Converter (Tap Level 제어 전력 변환기의 권선설계)

  • Chun J.H.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.53-55
    • /
    • 2006
  • In this paper discusses winding methode of single phase AC-DC reversible power converter The reversible power converter driven by multi Tap winding at both side switching control. It has a advantage that simple drive of main switching device. and obtain load current of good quality without filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/DC-AC multi-level reversible converter.

  • PDF

A New Definition of Short-circuit Ratio for Multi-converter HVDC Systems

  • Liu, Dengfeng;Shi, Dongyuan;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1958-1968
    • /
    • 2015
  • In this paper, a new definition of short-circuit ratio concept for multi-converter HVDC systems is proposed. Analysis results of voltage interaction between converters show that the reactive power-voltage characteristic of a converter has a dominant effect on voltage interaction level compared with its active power-voltage characteristic. Such a relation between converter reactive power and voltage interaction level supports taking the former into account in the definition of short-circuit ratio concept for multi-converter systems. The proposed definition is verified by the method of maximum power curve for various system configurations. Furthermore, a formula to calculate transient overvoltage for multi-converter systems is derived based on the proposed definition, and the efficiency of the derived formula is verified.

Level Up/Down Converter with Single Power-Supply Voltage for Multi-VDD Systems

  • An, Ji-Yeon;Park, Hyoun-Soo;Kim, Young-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • For battery-powered device applications, which grow rapidly in the electronic market today, low-power becomes one of the most important design issues of CMOS VLSI circuits. A multi-VDD system, which uses more than one power-supply voltage in the same system, is an effective way to reduce the power consumption without degrading operating speed. However, in the multi-VDD system, level converters should be inserted to prevent a large static current flow for the low-to-high conversion. The insertion of the level converters induces the overheads of power consumption, delay, and area. In this paper, we propose a new level converter which can provide the level up/down conversions for the various input and output voltages. Since the proposed level converter uses only one power-supply voltage, it has an advantage of reducing the complexity in physical design. In addition, the proposed level converter provides lower power and higher speed, compared to existing level converters.

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

An Optimization Design of the Diode Clamped Multi-Level Converter for Coaxial Inductive Power Transfer on the Low Voltage DC Micro-grid

  • Pairindra, Worapong;Khomfoi, Surin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.333-344
    • /
    • 2018
  • This proposed paper aims for the high efficiency contactless power transfer in household dc power distribution. A 300 W five-level diode clamped multi-level converter with 300 Vdc input dc link bus is employed for the power transferring task and the output voltage range is controlled at 48 Vdc. The inner and outer solenoid coils are used for inductive power transfer (IPT) transformer with the 200 kHz switching frequency for designed power density. Therefore, to achieve the converter efficiency above 95%, the LLC series resonant with fundamental harmonic analysis (FHA) and the calculated switching angles are used as an optimized tool for designing the system resonant tank. The validations of this approached topology are illustrated in both MATLAB/Simulink simulation and implementation.

Single Phase Multi-Level AC-DC Converter (단상 Multi-Level AC-DC 컨버터)

  • 안일매;전중함;이영호;박성우;서기영;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.354-357
    • /
    • 1999
  • This paper is proposed Single phase Multi-Level AC-DC Converter. This is consist of diode bridge and switches. The number of the supply current levels depends on the number of the individual converter's current level. In this converter circuit the number of the levels is equal to 2(M+1) -1, where M is the number of Switching-Leg's number. In this paper is introduced converter with 31 current Level. If the number of current level is increased, smoother sinusoidal waveform can be obtained. The feasibility of the circuit is verified by computer simulation using PSIM

  • PDF

Performance of Multi-level Inverter for High-Speed SR Drive (SRM의 고속운전을 위한 새로운 멀티레벨 인버터의 구동특성)

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • In this paper, a novel multi-level inverter for low cost high speed switched reluctance(SR) drive is proposed. The proposed multi-level converter has reduced number of power switches and diodes than that of a conventional asymmetric converter for SRM and smaller voltage rating of the dump capacitor comparing with energy efficient c-dump converter. It can supply five operating modes that is boosted, DC-link, zero, negative bias and negative boosted voltage. The proposed multi-level converter has fast excitation and demagnetization modes of phase current, so dynamic response can be achieved. The proposed multi-level converter is verified by computer simulation and experimental results.

A Sinusoidal Input Current Multi-Level Converter Using Transformer (변압기를 사용한 정현파 입력전류 Multi-Level Converter)

  • Kim, C.S.;Lee, H.W.;Suh, K.Y.;Chun, J.H.;Han, H.D.;Park, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.250-253
    • /
    • 2001
  • This paper is proposed a sinusoidal input voltage Multi-level AC-DC Converter using transformer. In this paper Multi-level PWM Control converter which controls input current by combining buck Converters together to improve input current characteristic, and confirmed its validity throughout simulation and experiment. This method, which is multiplying and duplicating output of converter of equal capacity, is able to control unit power factor of input current, reduce the problem caused by high frequency switching, and apply to high power converter because filter is not necessary.

  • PDF

Bi-Directional Multi-Level Converter for an Energy Storage System

  • Han, Sang-Hyup;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.499-506
    • /
    • 2014
  • This paper proposes a 3 kW single-phase bi-directional multi-level converter for energy storage applications. The proposed topology is based on the H-bridge structure with four switches connected to the DC-link. A simple phase opposition disposition PWM method that requires only one carrier signal is also suggested. The switching sequence to balance the capacitor voltage is considered. The topology can be extended to a nine-level converter or a three-phase system. The operating principle of the proposed converter is verified through a simulation and an experiment.

The Current Control with Multi-level Converter on Transformer type (변압기 방식 멀티레벨 컨버터의 전류제어)

  • Kim C. S.;Kwak D. G.;Chun J. H.;Suh K. Y.;Lee H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.215-218
    • /
    • 2001
  • This paper is proposed a sinusoidal input current multi-level ac-dc converter using transformer. The multi-level converter which controls input current by combining Buck converter to Improve input current characteristics. This method, which is multiplying and duplicating output of converter of equal capacity, is able to control unit power factor of input current, reduce the problem caused by high frequency switching, and apply to high power converter because filter is not necessary The feasibility of the circuit is verified by computer simulation using PSIM

  • PDF