Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.9
/
pp.23-30
/
1997
In this paper, a decision feedback recurrent neural equalization (DFRNE) scheme is proposed for adaptive equalization problems. The proposed equalizer models a nonlinear infinite impulse response (IIR) filter. The modified Real-Time recurrent Learning Algorithm (RTRL) is used to train the DFRNE. The DFRNE is applied to both linear channels with only intersymbol interference and nonlinear channels for digital video cassette recording (DVCR) system. And the performance of the DFRNE is compared to those of the conventional equalizaion schemes, such as a linear equalizer, a decision feedback equalizer, and neural equalizers based on multi-layer perceptron (MLP), in view of both bit error rate performance and mean squared error (MSE) convergence. It is shown that the DFRNE with a reasonable size not only gives improvement of compensating for the channel introduced distortions, but also makes the MSE converge fast and stable.
The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FIT, DWT(Discrete Wavelet Transform), and Fisher's criterion are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 10-class power quality disturbances are also provided.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.631-633
/
2005
유비쿼터스 시대가 다가오면서, 많은 사람들은 모르는 장소에서 자신의 위치와 목적지까지의 경로에 대한 정보를 알고 싶어할 것이다. 기존의 네비게이션(navigation)을 위한 비전기술은 고차원과 저차원 특징값을 이용하였다. 텍스춰 정보, 색상 히스토그램과 같은 저차원 특징값은 영상의 특징을 정확하게 표현하기 어려우며, 마커와 같은 고차원 정보는 실험환경을 구축하는데 어려움이 있다. 우리는 기존 저/고차원의 특징값 대신, 영상의 특징을 표현하고 인덱싱(indexing)하기 위한 유용한 정보를 많이 포함하고 있으며, 실제환경에서 널리 분포되어있는 중차원 특징값인 문자영상을 이용한다. 문자영상추출은 MLP(Multi-layer perceptron)와 CAMShift알고리즘을 결합한 방법을 이용하며, 서로 다른 장소지만 같은 문자를 가진 곳에서 인식을 수행하기 위해 문자영상의 크기와 기울기를 기반으로 한 영상 검색공간을 대상으로 영상매칭을 수행한다. 실험에서 문자영상을 포함하는 직사각형 검색공간으로 인해 다양한 크기와 기울기에서 높은 인식률을 보이며, 간단한 계산으로 빠른 수행시간을 가진다.
운전자의 주의력 감쇠는 교통사고 요인에 있어서 큰 비중을 차지한다. 주의력 감쇠는 무선 통화, 기기 조작, 졸음으로 나타날 수 있는데 자동차 대형사고의 대부분은 졸음운전으로 인하여 일어나며, 졸음운전 시에는 운전자의 운전조작 및 방어 조작 능력이 현저하게 저하한다. 본 시스템은 카메라로부터 실시간으로 영상 데이터를 입력 받아 처리하여 운전자의 졸음 상태를 인식하는 시스템으로 운전자에게 졸음방지 기능을 제공한다. Haar-Like Feature cascade classifier 방법을 사용하여 얼굴 및 눈 영역 검출을 하였고 Open Eye, Closed Eye가 학습된 MLP(Multi-Layer Perceptron)를 이용해 눈 깜박임을 인식하여 PERCLOS(Percentage of Eye Close)방법으로 졸음을 판단하였다. 본 논문에서 제안한 방법의 인식률의 정확도를 검증하기 위해 인식률 테스트를 하였다.
Journal of Institute of Control, Robotics and Systems
/
v.4
no.3
/
pp.372-377
/
1998
This paper deals with the detection, feature extraction and classification of surface defects in cold rolled strips. Inspection systems are one of the most important fields in factory automation. Defects such as slipmark and dullmark can be effectively detected with a Gaussian matched filter because their shapes are similar to Gaussian. It is justified that the proposed WF(Wavelet Frame) method could be regarded as multiscale Gaussian matched filter which can be applied to the inspection of cold rolled strip. After a wavelet frame transform, the entropies and moments are computed for each subband which pass through both local low pass filter and nonlinear operator. With these features as input, a MLP(Multi Layer Perceptron) is used as a classifier. The proposed inspection method was applied to the real images with defects, and hence showed good performance. The role of each extracted feature is analyzed by KLT(Karhunen-Loeve Transform).
The information-theoretic approach to face recognition is based on the compact coding where face images are decomposed into a small set of basis images. Most popular method for the compact coding may be the principal component analysis (PCA) which eigenface methods are based on. PCA based methods exploit only second-order statistical structure of the data, so higher- order statistical dependencies among pixels are not considered. Independent component analysis (ICA) is a signal processing technique whose goal is to express a set of random variables as linear combinations of statistically independent component variables. ICA exploits high-order statistical structure of the data that contains important information. In this paper we employ the ICA for the efficient feature extraction from face images and show that ICA outperforms the PCA in the task of face recognition. Experimental results using a simple nearest classifier and multi layer perceptron (MLP) are presented to illustrate the performance of the proposed method.
The enhancement to the back-propagation algorithm presented in this paper has resulted from the need to extract sparsely connected networks from networks employing product terms. The enhancement works in conjunction with the back-propagation weight update process, so that the actions of weight zeroing and weight stimulation enhance each other. It is shown that the error measure, can also be interpreted as rate of weight change (as opposed to ${\Delta}W_{ij}$), and consequently used to determine when weights have reached a stable state. Weights judged to be stable are then compared to a zero weight threshold. Should they fall below this threshold, then the weight in question is zeroed. Simulation of such a system is shown to return improved learning rates and reduce network connection requirements, with respect to the optimal network solution, trained using the normal back-propagation algorithm for Multi-Layer Perceptron (MLP), Higher Order Neural Network (HONN) and Sigma-Pi networks.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.337-340
/
2002
본 논문에서는 휠체어 시스템에 화자 독립 고립단어 인식을 위한 임베디드 시스템 설계에 관한 내용을 서술한다. 실제 환경에서는 잡음이 포함되어 있어 인식률을 저하시키므로, 잡음을 제거하는 방식 중 가장 간단한 방식인 스펙트럼 차감법(Spectral subtraction method)을 사용하여 잡음을 제거했다 전처리 단계에서는 12차 LPC&Cepstrum 방식을 사용했고, 인식 알고리즘은 DHMM (Discrete Hidden Markov Model)을 전반부 인식기로 사용했다. 이 알고리즘을 적용하기 위해서는 데이터 간소화를 위해 벡터양자화(Vector Quantization) 처리가 전제되어야한다 또한 인식알고리즘은 인식률을 향상을 위해 후처리 인식기로 신경망(MLP:Multi-layer Perceptron)을 통해서 인식률을 향상시켰다 화자 독립 시스템에 맞는 인식 단어의 구성은 총 7개단어로 남녀 총 25명 목소리로 구성하였다. 그리고 하드웨어 구성은 32-bits floating point 방식인 TMS320C32를 적용했고, 메모리 부분은 4Mbyte로 설계를 했으며, 메인보드의 설계는 현재 완성 단계에 있다.
신경회로망은 문자인식, 자동제어 등의 여러 분야에 널리 쓰이는 방식이다. 그러나 신경회로망을 구현하는데는 연산량이 많아서 실시간으로 구현하기에 어려움이 많이 따른다. 본 논문은 신경회로망을 구현하는데 필요한 연산을 살펴보고 그 연산을 구현하는 방법을 비교 분석하였다. 신경회로망을 구현하기 위해 DSP(Digital Signal Processor), PC의 FPU(Floating Point Unit), Intel사의 Pentium 계열 프로세서에서 지원하는 SIMD(Single Instruction Multiple Data) 기술을 사용하여 결과를 비교 분석 하였다. 신경회로망의 핵심인 MLP(Multi Layer Perceptron) 연산에 대해 실험한 결과 SIMD 기술을 이용하는 방법이 다른 방법에 비해 2배이상 좋은 결과를 나타내었다.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.208-210
/
2004
최근 인터넷, 인트라넷과 같은 통신 기술 발전에 따라 거의 모든 시스템이 서로 연결되었고, 사용자들은 손쉽게 정보를 공유할 수 있게 되었다. 따라서 시스템 침입을 통한 데이터의 변형과 인증 받지 않은 접근과 같은 컴퓨터 범죄가 급속도로 증가하고 있다. 그러므로 이러한 컴퓨터 범죄를 막기 위한 침입 탐지 기술 개발은 매우 중요하다. 전통적인 침입 탐지 모델은 단지 네트워크 패킷 데이터만을 사용하고 있으며. 침입탐지 시스템의 성능을 높이기 위해 서로 다른 분류 알고리즘을 결합하는 방법을 사용해왔다. 그러나 이러한 모델은 일반적으로 성능향상에 있어서 제한적이다. 본 논문에서는 침입탐지 시스템의 성능을 개선하기 위해 네트워크 데이터와 시스템 콜 데이터를 융합하는 방법을 제안하였으며. 데이터 융합 모델로서 Multi-Layer Perceptron (MLP)를 사용하였다. 그리고 DARPA 에서 생성한 네트워크 데이터와 본 논문에서 가상으로 생성한 시스템 콜 데이터를 함께 결합하여 모델을 생성 한 뒤 실험을 수행하였다. 본 논문에서의 실험결과로. 단순히 네트워크 데이터만을 사용한 모델에 비해 시스템 콜 데이터를 함께 결합한 모델이 훨씬 더 놓은 인식률을 보인다는 것을 확인할 수 있다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.