Proceedings of ITC-CSCC 2000, Pusan, Korea

A Simple Approach of Improving Back-Propagation Algorithm

H. ZHU*, K. EGUCHI**, T. TABATA**, N. SUN**
* Department of Computer Science, Faculty of Engineering,
Hiroshima Kokusai Gakuin University,

6-20-1 Nakano Aki-ku, Hiroshima 739-0321, JAPAN

** Kumamoto Natijonal College of Technology
2659-2, Suya, Nishigoshi, Kikuchi, Kumamoto 861-1102, JAPAN
Phone +4-81-82-820-2649, Fax +81-82-820-2640
Email kohe@wuchang.cs.hkg.ac.jp

Abstract: The enhancement to the back-propagation
algorithm presented in this paper has resulted from
the need to extract sparsely connected networks from
networks employing product terms. The enhancement
works in conjunction with the back-propagation weight
update process, so that the actions of weight zeroing
and weight stimulation enhance each other. It is shown
that the error measure, can also be interpreted as rate
of weight change (as opposed to AWj;), and conse-
quently used to determine when weights have reached
a stable state. Weights judged to be stable are then
compared to a zero weight threshold. Should they fall
below this threshold, then the weight in question is ze-
roed. Simulation of such a system is shown to return
improved learning rates and reduce network connection
requirements, with respect to the optimal network solu-
tion, trained using the normal back-propagation algo-
rithm for Multi-Layer Perceptron (MLP), Higher Order
Neural Network (HONN) and Sigma-Pi networks.

1. Introduction

Networks involving the use of product terms, such as
HONN’s[1][2] or Sigma—Pi Networks[3] are known to be
capable of returning much faster learning times than
those returned by their single order counterpart (i.e.,
perceptron and MLP). However, the fundamental draw-
back in such systems results from a dramatic increase
in the interconnect and weight density, as the produc-
t term order increases[l]. A further characteristic of
product term network performance is that a sparse-
ly connected network is returned[4][5], following com-
pletion of training from an initial fully interconnected
network. Given this characteristic, it is evident that
product term networks in particular only use a subset
of the available weights.

Consequently, a requirement exists for an amend-
ment to the learning algorithm which is capable of set-
ting to zero those weights of low magnitude during the
learning process. Hence, by zeroing weights represent-
ing incorrect descriptors, it is envisaged that weights
representing useful descriptors receive more stimulus,
so speeding the learning process. A final requiremen-
t of such a system is that should weights representing
useful descriptors be zeroed, the system can correct the
'mistake’. The design parameters for such a system are
strict due to the already large practical requirements of

the product term networks. Consequently, the system
should incur as low as possible additional storage re-
quirements, and make use of the variables already used
by the learning rule.

Application of a faster learning rate to the sparse-
ly connected network allows much faster convergence
through the dual mechanisms of

1. reduced network interconnect/weight requirement
(i.e., reduced network hardware requirements),

2. faster learning parameters (higher than in the ini-
tial learning phase).

The design of such a system is presented in section
2, with experimental results in section 3.

2. Algorithm Design for Weight Zeroing during
Sigma—Pi Network Training

There are three considerations which need addressing

when extracting a sparsely connected network,

1. identification when a weight is of a stable magni-
tude.

2. whether a stable weight is of significant magni-
tude.

3. when to extract the sparsely connected network.

Given that the last point has been considered in
the preceding paragraph, the first two points are ad-
dressed in the following sections.

2.1 Weight Stability

A stability measure is employed to determine at what
point a weight is said to represent a descriptor, or more
accurately the amount of a descriptor present in the I/0O
relationship. Practically the measure is such that when-
ever the weight rate of change diminishes below some
threshold, then the corresponding weight magnitude is
analyzed. The weights’ rate of change is evaluated as
the partial differential of the present weight change pa-
rameter.

Hence, the weights’ rate of change from pattern
’p’ for a first order weight is given by,

OW,,. .
2 = b (8) + oyt~ 1) 1)
Yp;

—1041~—

Table 1 Effect of Changing Zero—Weight Threshold for (4, 5, 3) MLP Network

Zero-Weight 0.1

02 05 1 1.1 1.7

threshold
Iterations 174 159 211 182 181 245
weights 32 33 24 22 22 17

Performance factor

0.79 084 087 11 104 1.06

where

Wpij Wpij (t - 1) + 775 i(t)ypj (t) +

omdp, (t = 1)yp, (t — 1) (2)
For a weight handling second order terms this becomes,

ow,

Pijk
2= =ndp,(t) + andp, (t — 1 3
a(ypjypk) 77 D () n p () ()
where

Wpijk = Wpijk(t - 1) + T}5 i(t)ypj (t)ypk (t) +
ambp, (t — Dyp, (t — Dyt —1) (4)
p - indicates pattern 'p’ from the training Set.

i - index of destination neuron.

j, k- indexes for incoming stimuli to the present

layer.

Consequently, the weight rate of change is a func-
tion of the receiving node error, where all the weights
feeding that node have the same stability factor (i.e.,
error).

2.2 Weight Significance

Once a weight has attained the required minimum ’sta-
bility’ a weight magnitude comparison is performed
with respect to a reference magnitude. Should the
weight magnitude fall below this threshold (the weight
having already been updated using the normal update
process), then it is considered to deduct from the over-
all network performance, and is set to zero magnitude.
If the threshold is exceeded, then the weight in question
is left untouched.

On the next weight update, those weights which
were not set to zero are enhanced further, so pushing
the I/O characteristic closer to the descriptors they rep-
resent. Two mechanisms are at work. Firstly, the nor-
mal weight update process, and secondly, there is no
longer an opposing effect from those weights which are
set to zero. If the action of the weight zeroing has a
decremental effect on network performance, then the
node stability decreases (i.e., error increases) and the
weights are updated in the normal manner (Generalized
Delta Rule[3]).

2.3 Considerations when Selecting Stability and
Weight Zero Thresholds

It is quite possible that, during training, a weights’ sta-
bility may cycle between stable and volatile conditions,
as the weight space is transversed. This means that
setting a high weight zeroing threshold, below which
weights having a 'stable’ (i.e., small) error function are
zeroed, will result in potentially promising weights n-
ever having the chance to develop beyond the threshold
level. Having said this, "high’ weight zero thresholds are
possible when used in conjunction with lower network
learning rates. Conversely, setting a zero threshold too
low results in 'bad’ descriptors filtering through, and
the performance is no better than that of the original
Generalized Delta Rule.

3. Weight Zero Algorithm Performance

The performance of a system employing the Weight Ze-
roing algorithm outlined in the above section is mea-
sured in two ways,

1. Ability to speed convergence.

2. Ability to select a sparsely connected network.

These requirements will be investigated in the
context of the three network topologies to which the
Generalized Delta Rule[3] can be applied. In all cases,
unless otherwise stated, networks are judged to have
converged when all nodes have maximum output differ-
ence of 0.1. Likewise, a stability threshold of 0.00005
is used in all Weight Zero Enhanced (WZF) algorithm
examples.

3.1 MLP Performance with Weight Zeroing
Algorithm

It is already known that the optimal network config-
uration for the Two Bit Adder problem[4] using the
MLP architecture is that of a (4, 4, 3) network. A con-
vergence time of 157 iterations is obtained using the
standard Generalized Delta Rule with a learning rate
of 1 and a momentum of 0.9. This is used as a refer-
ence to judge the performance returned by the WZF
algorithm.

Increasing the number of hidden layer neurons by
one (4, 5, 3) tests the WZF algorithms ability to ex-

—1042—

Table 2 Effect of Changing Zero—Weight Threshold for Third Order (4, 3) HONN NETWORK

Zero—Weight 0.1 02 0.3/04 1 1.7 1.8/1.9
Threshold
Iterations 980 980 984 1525 879 no
Weights 19 17 17 14 10 convergence!
Performance Factor 2.22 2.5 2.44 1.92 4.78

tract sparsely connected networks, before convergence
is completed, and determines whether the optimal net-
work solution can be returned, for the same learning
rate as applied to the reference network.

Table 1 shows the effect of varying the zero-weight
threshold from which the following general characteris-
tic emerges. For low magnitudes of zero-weight thresh-
old, faster learning times are returned, at the expense
of the number of weights employed. The reverse is true
for weight count minimization. Consequently, for zero—
weight thresholds greater and equal to 0.5 (table 1), the
number of weights employed is lower than that used in
the optimum (4, 4, 3) net with the Standard learning
rule.

Network Performance is a function of the number
of iterations required for convergence and the number
of weights used in the converged network. Hence the,

Net Performance = numb. of iterations to convergence
x number of weights

In order to provide a comparison of network per-
formance between the initially optimal (4, 4, 3) and
redundant node (4, 5, 3) networks, the following Nor-
malized Performance Factor, based on the Network Per-
formance measure above, is used. Thus,

Performance Factor = Reference Network Performance
\WZE Network Performance

3.2 HONN Performance with Weight Zeroing
Algorithm

In the investigation of the performance of Higher Order
Neural Networks the Two Bit Adder problem is used
(network requirement (4, 3)) with the same learning
rate as the MLP. The network converged in 980 itera-
tions, and 12 of the 42 available weights were over uni-
ty magnitude (average weight magnitude 2.33). Hence,
it is expected that application of the Weight Zeroing
Enhanced algorithm will provide substantial reductions
in the required network weight / interconnect require-
ments, though not necessarily in speed, due to the opti-
mal neuron count of the network (i.e., the (4, 3) network

!Convergence attempted for a network using 11 weights.

by default cannot have a lower neuron count).

Table 2 shows that, for the optimum WZE solu-
tion, the solution identified uses a total weight count of
10 for the same training time.

3.3 Sigma—Pi Performance with Weight Zeroing
algorithm

Again the Two Bit Adder problem is used, this time
using a network of intermediate characteristics (4, 3,
3), permitting first and second order product terms.
This represents the optimum network configuration, in
terms of nodes per layer. Applying the Generalized
Delta Rule to provide a performance reference for the
Sigma~Pi structure, returns a training time of 271 iter-
ations, using a learning rate of 2 and momentum term
of 0.2. Application of the WZE algorithm over a range
of weight zero thresholds produces the same trade off
between learning time and number of weights previous-
ly located. However, because more redundant terms
exist within the minimum network configuration (the
reference performance having 18 weights below unity
magnitude, where the network average is 2.9), then all
performance factors for the various thresholds in table
3, represent a performance increase over that available
from the reference.

3.4 Optimum Sigma—Pi network extraction

As in the MLP example, the number of nodes in the
hidden layer is increased by one, the aim is to extract
the optimum (4, 3, 3) network. Again the performance
factor remains better than that returned using the ref-
erence network with the same learning parameters. Of
more concern is the inability to locate the optimum net-
work configuration until the last weight zero threshold
which returns a converging network. A sharp switch
is observed, between the minimum number of weights
providing convergence comfortably and a weight selec-
tion unable to provide convergence. Furthermore, the
correct weight distribution, approaching the optimum
network configuration, have not been selected until the
last maximum difference threshold of 0.1, making s-
parsely connected network extraction for optimal net-
work configurations difficultly.

This increased difficulty in locating the correct
weight / interconnect distribution can be attributed to

—1043—-

Table 3 Effect Of Changing Zero-Weight Threshold for (4, 3, 3) Sigma~Pi Network

Zero—Weight 0.1 02 05 1 1.5 1.6
Threshold

Iterations 252 210 228 201 258 307

Weights 41 34 30 24 18 17

Performance Factor

079 055 053 037 036 04

a dramatic increase in the network complexity. In the
MLP example, inserting an extra hidden layer node (4,
4,3 to 4, 5, 3) resulted in a weight increase of 7 weight-
s. For the second order Sigma-Pi network, increasing
the number of hidden layer nodes by one, results in an
extra 12 weights (or 28 interconnects), on a network
which is already 70 complex than the (4, 4, 3) MLP
system.

4. Conclusion

A simple addition to the Generalized Delta Rule has
been demonstrated capable of zeroing weights judged
to be stable and of an insignificant magnitude during
the training process. This addition is made possible by
first showing that the node error can be interpreted as
a weight stability factor describing the rate of weight
change for the weights feeding that node. The interac-
tive nature of this system means that should weights
representing useful descriptors be set to zero, the sys-
tem is capable of correcting the mistake (assuming that
the weight zero threshold is not set too high).

For the problems considered, simulation shows
that the learning time and weight / interconnection re-
quirements are improved, though as the network com-
plexity increases, the ability to continuously return an
optimum network configuration decreases. Further-
more, the extraction of sparsely connected networks is
possible, allowing application of faster learning param-
eters, so resulting in faster training times, though care
must be applied when extracting such networks in com-
plex systems.

References

[1) Giles C., Maxwell T., “Learning Invariance and
Generalisation in Higher Order Neural Networks”,
Applied Optics, Vol.26, pp.4972-4978, 1987.

Yang H., Guest C. C., “High Order Neural Net-
works with Reduced Numbers of Interconnec-
tion Weights”, Journal of Neural Networks, Vol.3,
pp.281-286, 1991.

Rumelhart D. E., McClelland J.L., “Parallel
Distributed Processing, Explorations in the Mi-
crostructure of Cognition, Volume 1 Foundations”,
MIT, 1986.

Karnin E.D., “A Simple Procedure for Prun-
ing Back-Propagation Trained Neural Network-

2l

(3]

[4]

1044

s”, IEEE Transactions on Neural Networks, Vol.1,
No.2, pp.239-242, 1990.

[5] Maxwell T., Giles C. L., Lee Y. C., “Generalisation
in neural Networks: The Contiguity Problem”,
IEEE First International Conference on Neural
Networks, Vol.2, pp.41-46, 1987.

