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Abstract: The information-theoretic approach to face
recognition is based on the compact coding where face
images are decomposed into a small set of basis images.
Most popular method for the compact coding may be the
principal component analysis (PCA) which eigenface
methods are based on. PCA based methods exploit only
second-order statistical structure of the data, so higher-
order statistical dependencies among pixels are not
considered. Independent component analysis (ICA) is a
signal processing technique whose goal is to express a
set of random variables as linear combinations of
statistically independent component variables. ICA
exploits high-order statistical structure of the data that
contains important information. In this paper we employ
the ICA for the efficient feature extraction from face
images and show that ICA outperforms the PCA in the
task of face recognition. Experimental results using a
simple nearest classifier and multi layer perceptron
(MLP) are presented to illustrate the performance of the
proposed method.
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1.Introduction

Face recognition is a complex and difficult problem
that is important for surveillance and security,
telecommunications, and human-computer intelligent
interactions. The task of face recognition is to recognize
a person in the scene using a stored database of faces,
given still or video images of the scene. Most popular
statistical methods for face recognition are eigenface
methods that are based on PCA [7,3].

The PCA finds an orthogonal projection that captures
the maximal retained variances of input data. PCA based
methods exploit only second-order structure of the data,
so higher-order statistical dependencies among pixels are
not considered.

Independent component analysis (ICA) is a signal
processing technique which aims at finding a linear
transformation to variables that are maximally
statistically independent. Thus higher-order statistical
structure is incorporated.

In this paper, we apply the ICA to the task of face
recognition and find a statistically independent feature in
the reduced feature space that is already found by PCA.
We compare the performance of PCA and ICA using the
AR database [5]. A simple nearest classifier and MLP
are used for classification. Experimental results show
that the ICA outperforms the PCA in the task of face
recognition.

2. Feature Extraction

1. Principal Component Analysis (PCA)

Each of the pixel values in a sample image is
considered as a coordinate in a high dimensional space,
i.e., the image space. Let us consider a set of N sample
face images, {xl,...,xN}, each of which belongs to m -
dimensional image space. In general, face images are
very high dimensional space, so a dimensionality
reduction scheme is required. The PCA is known as an
efficient tool for dimensionality reduction.

Let us consider a linear transformation from m -
dimensional image space to n -dimensional feature
space (n < m). The feature vectors {z’} are defined by

z, =Ux, 1
where U € R™ is a linear transformation matrix with
orthonormal rows. In PCA, the matrix U is chosen to

minimize the reconstruction error. It is known that the
rows of U correspond to the principal eigenvectors of

the sample covariance matrix of {x,}. It is briefly

explained below.
The average face u , is defined by

=%Zx,. (2)

Then, the sample covariance matrix C, is given by

N

C, == (x, ~u)x, -n)

N 3)
= i(INI)’,
N
where @ is
®= [xl —H, Xy —”] 4

Since the sample covariance matrix C  is symmetric,

we have the following eigen-decomposition:
C.=VAV', &)

where V is the modal matrix (the column vectors of
V' correspond to the normalized eigenvectors of C,)
and A is the corresponding eigenvalue matrix whose
diagonal elements are arranged in descending order of
their magnitude. First » column vectors are selected and
are assigned to the n row vectors of the matrix U in
PCA. The n row vectors of the matrix U are called
eigenfaces and are served as basis images.
Snap-shot method

If the number of sample images, N is less than the
dimension of the image space, m, then it was argued in
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{7] that the m -dimensional eigenvectors of €, can be
computed by first finding the eigenvectors of the matrix
@' ®. Let us consider the eigenvectors {e,] of the

matrix ®" @ such that

D D = Je,. (6)
Premultiplying both sides by @, we have
DD’ De, = 1 De,. @)

One can see that ®e, are the eigenvectors ®®’ . This

approach reduces the computational complexity. But
these eigenvectors are not orthogonal, so we need
orthogonalization technique. For example, Gram-
Schmidt orthogonalization method can be employed.

I1. Independent Component Analysis (ICA)

In signal transformation or data representation, it is
often useful to represent the data as a linear
superposition of basis vectors. In  complete
representation, the n-dimensional data z={z,,..,z,1"
is written as

n

7= Zs,a. , (8)

i
i=1

where {a,.} is a set of basis vectors that spans the 7 -
dimensional vector space and {s,.} is a set of basis

coefficients that represents the activity of the
corresponding basis vectors.

Many statistical models are generative models that
make use of latent variables to describe probability

distributions over observations. Let us define the matrix
A= [a a ] and the vector s = [sl,...,s” ]T. Then Eq.

"
(8) can be written as

z=4As. €))
In fact that model (9) is a linear generative model in the
limit of zero noise. The goal of ICA is to find both A
and s given only z , under the assumption of
statistical independence of {s,} and A4 is a full rank
matrix.

In the framework of latent variable model, basis
coefficients {si} can be viewed as latent variables that
are not directly observable to us, but are observed
through the data z . The matrix A4 represents a linear
transformation from latent space to data space.

Learning basis vectors can be achieved by maximizing
the probability of data given model. For a set of NV

independent data vectors {z, }N the likelihood function

1=1?

is given by
[1rG14). (10)

A single factor in the log-likelihood function has the
form

log p(z| 4) = -log|det A| +log p(A"z). (1)
Note that p(47'z) is factored into the product of

marginal density functions due to the assumption of
statistical independence of basis coefficients.
Let us define
y=A'z (12)
Then the vector y is the estimate of basis coefficient

vector s. In the complete representation, the vector y
is easily computed through (12) after we estimate the
matrix 4 by maximizing the log likelithood (11).

The learning algorithm for updating A can be derived
using the natural gradient that is shown to be efficient in
on-line learning [1]. Taking the statistical independence
among {y,.} into account, the log likelihood is given by

log p(z | 4) = —log/det 4|+ Y log p,(y,),  (13)
i=l

where {p()} are probability density functions of basis

coefficients {s,. } One can easily see that different priors

for basis coefficients result in different log-likelihood

functions.

Let us define a function

dlog p,(y,)
dy ’

with this definition, we calculate an infinitesimal

increment of the second term in (13),

d{z log p, (, )} =-¢"(y)dy, (15)

wf(yi)z~ (14)

i

where
o) =le,(v )0, 0] (16)
We define a modified differential matrix dB as
dB=A"dA. (17)

with this definition, we have
d {Z log p, (y,)} =o' (y)iBy , (18)
i=1
and
dflog | det 4} = w{dB}, (19)

where tr{} is the trace operator.

Combining (18) and (19), the infinitesimal increment of
the log-likelihood (13) is given by

dllog plz| A)} = -ur{dB}+ 0" (y)iBy . (20)
The differential in (20) is in terms of the modified
differential matrix dB . Since dB is a linear

transformation of d4, dB represents a valid search
direction to maximize (13) as long as dA is nonsingular,
because dB spans the same tangent space of matrices
as spanned by dA.

We calculate the derivative of the log-likelihood with
respect to the modified differential matrix dB . Invoking
(20), we have

dhog plz | 4)} Zgz L) I vy (1)
Gradient ascent method leads to the updating rule for B
in the following form
ap -, dlo 1 4)
dB (22)
=-n{l- o)y}
where 7, >0 is a learning rate and AB represents the
difference between the current value of B and the
previous value of B.

From the relationship between the modified differential
matrix dB and the differential matrix dA4, we have the
following learning rule for updating A4,
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A=A -p(y)y'}. (23)
At each iteration, the estimate of basis coefficient basis
vector, y is computed by y = A"'z using the current

estimate of A . Then the value of A is updated by (23).

This procedure is repeated until A converges.

Alternatively it is possible to learn A™' instead of
A.The A7 coincides with the ICA filter [4,6]. Let us
define W = A" . In similar manner, the maximization of
the log-likelihood leads to the learning algorithm for
updating W in the following form.

AW =T -p(p)y" W . (24)
3. Classification

I. Nearest Classification

The simplest method for determining which face class
provides the best description of an input face image is to
find the face class & that minimizes the Euclidian
distance

2
s =|Q-a| (25)
where Q is a feature vector of input face image (test
data set). And €, is a feature vector of training data set

which describing the k th face class.
II. MLP Classification

We use a feedforward neural network in order to
increase the performance of the classification. A two-
layer feedforward neural network with M hidden
nodes and L output nodes can be defined by
deterministic functions of the forms

f(:;0)= JO(EM: v,o, (wj -z +bj.)+c,), i=1,..,L(26)

where each f,(z;8) corresponds to the i th output

node, respectively. The parameter vector @ includes all
parameters w v b,, and c¢,. The activation

Jj? g2 i
function o,(:) for hidden nodes is a sigmoid function,
and the activation function o,(-) for output nodes is

defined by

t.
o (net,) = =) @7)
Z exp(net,)
k=1
M
net, = ZV,]U,, (wj. -+ bj)+ c (28)

J
in order that the summation of the values of all output
nodes becomes unity.

We use this neural network model for estimating the
conditional probability of random vector y given input
feature z . The corresponding conditional probability
density function can be described by

p(y1z0)=]]1(z0)" (29)

Here the random vector y represents which class the

input z 1is given from, and it is defined as

1 i=argmin; f;(z,0
y, = g . i fi(z:0) 30)
0 otherwise.

The stochastic gradient descent learning method is
used to find an optimal value of the parameter 8, which
maximizes the log likelihood function of the form

I(z,y";0) = Zy,-' log f(2;0). (31

The update rule at each learning step ¢ can be written
as
ol(z,,¥,39,)
=0, + e
141 4 ’7[ aa

1

0 (32)

where 7, is a learning rate.

4. Simulation Results

We evaluated face recognition performance for the
PCA method and the ICA method using the AR face
database [5]. The data set contains frontal view faces of
40 people with different facial expressions (neutral
expression, smile, anger) and illumination conditions
(left-light-on, right-light-on) from two sessions which are
separated by two weeks. There were 400 face images (40
people * 5 images * 2 sessions), 200 face images of
which were selected as the training set (neutral
expression, anger, and right-light-on from first session;
smile and left-light-on from second session). The rest of
face images (200 face images) were chosen as the test set
(smile and left-light-on from first session; neutral
expression, anger, and right-light-on from second
session). Each face image was cropped to the size of
46x 50 and the rows of face images were concatenated to
produce 2300 x 1 column vectors. Sample images for the
training set and the test set are shown in Figures 1 and 2.

Figure 2: Sample images in the test set.

In order to find the eigenvectors of the sample
covariance matrix of the data, we tested the following 3
methods.

Method 1. We compute the full

matrix (mxm).
Method 2. Snap-shot method.
Method 3. Snap-shot method followed by Garm-
schmidt orthogonalization.
First twenty eigenfaces (which correspond to row vectors
of U ) are shown in Figure 3. and twenty ICAfaces are
shown in Figure 4. which correspond to column vector of
A. The classification was performed using a nearest
neighbor classifier. The results are in Figure 5. The
classification using neural networks, we used 40 hidden
nodes. The learning rate was empirically selected to get

covariance
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good convergence. We stopped the learning when the
mean squared error of the network output becomes
smaller than 0.001. The results are in Figure 6.

5. Conclusions

In the information-theoretic approach to face
recognition, face images are decomposed into a set of
basis images and feature vectors are obtained by
projecting face images into basis images. In this paper,
we have applied the ICA method to obtain basis images.
In contrast to the PCA where only second-order structure
of the data was used, the ICA exploited higher-order
statistical structure of the data which may contain much
of important information. We have shown that the ICA
outperformed the PCA in the task of face recognition.
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by row.

Figure 4. 20 ICAfaces, ordered by coluymn, then, by row
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