• Title/Summary/Keyword: Multi-layer materials

Search Result 500, Processing Time 0.029 seconds

Investigation and Analysis of Cracks in Multi-layer Ceramic Capacitor (다층세라믹 콘덴서에서 생성된 크랙의 관찰과 분석)

  • Lee, Chul-Seung;Kang, Byung-Sung;Hur, Kang-Heon;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • For the Y5V characteristic MLCC which is very prone to crack, it is important to to find out the basic cause of the crack. After finding out the crack origin, the materials and processes should be developed to remove the crack. The microstructures of the cracks were investigated using the fractographic method for the various types of cracks such as an exterior crack, a cyclic thermal shock crack, and an piezo-electric crack. It was found out that the crack origin was the pore at the end of the Ni inner electrode after bake-out. Even though the three dimensional crack shapes were different, the crack origins were seemed to be similar. The exterior crack could grow from the origin with the aids of residual and applied stress. FEM (finite element method) analysis was used to calculate the stress distribution of residual and applied stress. And the concept of fracture mechanics was applied for the explanation of the crack initiation and propagation from the stresses concentration.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.

A Study on Estimation Model of Resistance Value from Change of PTH Crack Size (PTH Crack을 고려한 저항 변화 추정 모델)

  • Kim, Gi-Young;Park, Boo-Hee;Kim, Seon-Jin;Yoo, Ki-Hun;Seol, Dong-Jin;Jang, Joong-Soon;Lee, Hyung-Rok;Kim, Tae-Hyuk
    • Journal of Applied Reliability
    • /
    • v.8 no.4
    • /
    • pp.155-166
    • /
    • 2008
  • PTH cracks are caused by the mismatch of coefficient of thermal expansion(CTE) between polymer and laminated materials, and are one of the main failure mechanisms of multi layer boards. In spite of its importance, it is usually hard to measure or detect them because of its small size and invisibility. To detect PTH cracks more effectively, this paper proposes a theoretical model that can estimate the resistance value from crack size of PTHs. Using four-point probe resistance measurement method, the resistance value of test coupons is measured. Through measured data, we verify the validity of the proposed theoretical model and set up criteria of failure.

  • PDF

An Analysis Using Numerical Model of Composite Multi-Layer Insulation for SOFC (SOFC용 고온 적층 단열재의 해석적 고찰)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.540-548
    • /
    • 2019
  • This study was conducted to develop insulation for solid oxide fuel cell (SOFC). The developed insulation is based on the lamination technology and the radiation shielding technology of the satellite insulation. The insulation material is consisting of insulation material for conduction resistance, spacer, and radiation shielding material. The experimental apparatus consisting vacuum bell jar, pump, heater and temperature recording device has developed to verify the performance of the insulation. The experimental values were used as reference data for the modeling development. In this paper, heat transfer is assumed to be one- dimensional phenomena for the prediction of insulation performance and internal temperature distribution in high temperature region of SOFC. The developed model was used to compare the performance difference of insulation types according to composition materials. The analysis result shows that the insulation including spacer and radiation shielding has better heat insulation performance than other cases. In this study, the thickness reduction effect of about 20% was shown compared to the insulation including only conductive material. It is noted that the radiant shielding material should be carefully selected for durability, because SOFC insulation should be used for a long time at high temperature.

Effect of Hydrodemolition on Bonding Strengthof Structures Repaired or Rehabilitated with VES-LMC (VES-LMC로 보수.보강된 구조물의부착강도에 미치는 Hydrodemolition의 영향)

  • Kim, Seong-Kwon;Shim, Do-Sick;Lee, Bong-Hak;Yun, Kyung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.397-400
    • /
    • 2006
  • Most of the civil structures in Korea and abroad have many kinds of damages when they are facing over-loaded traffics, long-term serviceability, and severe environmental conditions. Repair, rehabilitation, and retrofit are important for maintaining the serviceability of structures. In recent year, VES-LMC has been widely used as repair material for bridge deck repair and rehabilitation, because the VES-LMC has a various benefits such as traffic opening after 3 hours of curing, higher durability and bond strength. In case of any structure repaired or rehabilitated with VES-LMC, those were influenced capacity of bond between the base layer of slab and VES-LMC as well as physical properties of each other materials. The capacity of bond depended on purity of interface, micro cracks, curing of VES-LMC and so like. A kind of popular concrete repair technique, High pressure water jetting equipment is extremely efficient at removing damaged concrete. Removing damaged or poor quality concrete from sensitive structures such as bridge, tunnels, multi-story car parking decks and runways, using the high pressure water jetting could remove damaged or poor quality concrete remaining healthy and sound concrete. Accordingly, the purpose of this study is that it was to evaluate effect of hydrodemolition on the bond strength of VES-LMC overlay compared with effects of other method such as breaker, untreated. Also, it was evaluated the effect of surface moisture.

  • PDF

A Broadband Microstrip Array Antenna for PCS/IMT-2000 Base-Station (PCS/IMT-2000 기지국용 광대역 마이크로스트립 배열 안테나)

  • 김태우;최재훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1620-1627
    • /
    • 2001
  • In this paper, a broadband microstrip antenna for PCS and IMT-2000 service is designed. To obtain the broadband characteristics of an antenna, we utilized the multi-layered structure composed of two foam material layers, parasitic element and aperture coupled feeding network. The broadband characteristic is obtained by changing the size of parasitic element and the height of foam materials. In addition to that, the usage of metal layer at the distance of λ/4 from feed-line, back radiation is reduced. The bandwidth of a single element for VSWR less than 1.3 is about 550MHz. The bandwidth of a designed 1$\times$4 array antenna for VSWR less than 1.3 is about 460MHz. The gain of a designed array antenna is about 11.15∼12.15dBi and the front-to-back ratio is about 30dB.

  • PDF

Circuit Modeling of 3-D Parallel-plate Capacitors Fabricated by LTCC Process

  • Shin, Dong-Wook;Oh, Chang-Hoon;Yun, Il-Gu;Lee, Kyu-Bok;Kim, Jong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • A novel method of high speed, accurate circuit simulation in 3-dimensional (3-D) parallel-plate capacitors is investigated. The basic concept of the circuit simulation methods is partial element equivalent circuit model. The three test structures of 3-D parallel-plate capacitors are fabricated by using multi-layer low-temperature co-fired ceramic (LTCC) process and their S-parameters are measured between 50 MHz and 5 GHz. S-parameters are converted to Y-parameters, for comparing measured data with simulated data. The circuit model parameters of the each building block are optimized and extracted using HSPICE circuit simulator. This method is convenient and accurate so that circuit design applications can be easily manipulated.

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

A Comparative Study of Skin Frictional Force through a Laboratory Model Test of Pile Filling Materials with Utilizing Circulating Resources (순환자원 활용 말뚝채움재의 실내모형시험을 통한 주면마찰력 비교 연구)

  • Song, Sang-Hwon;Jeong, Young-Soon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Rural multi-purpose buildings needs to ensure their safety against various disasters. Therefore, a pile foundation, which is a foundation type that can transmit the load of the structure to the bedrock layer, has been designed. The pile foundation method is largely divided into driving piles method and pre-bored pile method. Recently, in order to respond to the Noise and Vibration Control Act and related environmental complaints, construction of pile foundation adopts pre-bored pile method. The bearing capacity of the pre-bored pile method is calculated through a load test in situ. However, a disadvantage stems in that it is difficult to measure the ultimate bearing capacity due to field conditions. Therefore, in this study, the skin frictional force of pre-bored pile was measured through a model test in laboratory for each pile filling material. In result, the pile filling material with using circulating resources shows superior skin frictional force than ordinary portland cement. This study also judged that the result can be applied in place of ordinary Portland cement in the field.