• Title/Summary/Keyword: Multi-Scale Approach

Search Result 278, Processing Time 0.025 seconds

Improved Watershed Image Segmentation Using the Morphological Multi-Scale Gradient

  • Gelegdorj, Jugdergarav;Chu, Hyung-Suk;An, Chong-Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2011
  • In this paper, we present an improved multi-scale gradient algorithm. The proposed algorithm works the effectively handling of both step and blurred edges. In the proposed algorithm, the image sharpening operator is sharpening the edges and contours of the objects. This operation gives an opportunity to get noise reduced image and step edged image. After that, multi-scale gradient operator works on noise reduced image in order to get a gradient image. The gradient image is segmented by watershed transform. The approach of region merging is used after watershed transform. The region merging is carried out according to the region area and region homogeneity. The region number of the proposed algorithm is 36% shorter than that of the existing algorithm because the proposed algorithm produces a few irrelevant regions. Moreover, the computational time of the proposed algorithm is relatively fast in comparison with the existing one.

Investigating nonlinear vibration behavior of sandwich panels with multi-scale skins based on a numerical method

  • Cui, Zhenming;Cai, Xin;Ali, H. Elhosiny;Muhsen, Sami
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.283-292
    • /
    • 2022
  • A nonlinear vibrational analysis of sandwich curved panels having multi-scale face sheets has been performed in this article based on differential quadrature method (DQM). All mechanical properties of multi-scale skins have been established in the context of three-dimensional Mori-Tanaka scheme for which the influences of glass fibers and random carbon nanotubes (CNTs) have been taken into account. The governing equations for sandwich the panel have been developed based upon thin shell formulation in which geometry nonlinearities have been taken into account. Next, DQ approach has been applied to solve the governing equations for determining the relationships of frequencies with deflections for curved panels. It will be demonstrated that the relationships of frequencies with deflections are dependent on the changing of CNT weight fractions, fibers alignment, fibers volume, panel radius and skin thickness.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems (다층분석법을 이용한 대규모 파라미터 설계 최적화)

  • Kim, Young-Jin
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.

Free Vibration Analysis based on HSDT of Laminated Composite Plate Structures Using Multi-scale Approach (멀티 스케일 접근 방법에 의한 복합소재 적층 판구조의 HSDT 기반 고유진동 해석)

  • Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of composite plate structures for construction using multi-scale approaches, which is based on the higher-order theory. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite plates for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach (MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사)

  • Kim, Namsu;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

Stochastic upscaling via linear Bayesian updating

  • Sarfaraz, Sadiq M.;Rosic, Bojana V.;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.211-232
    • /
    • 2018
  • In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse-scale continuum material model described in the framework of generalized standard materials. The model parameters are considered uncertain, and are determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse scale elastic and inelastic material parameters.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.