Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo (Flight Vehicle Research Center, Seoul National University) ;
  • Ji, Kuk-Hyun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Paik, Seung-Hoon (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Published : 2008.12.01


This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.



  1. R. M. Jones, Mechanics of Composite Materials. McGraw-Hill Book Company, New York, USA (1975).
  2. R. F. Gibson, Principles of Composite Material Mechanics. McGraw-Hill Book Company, New York, USA (1994).
  3. N. J. Pagano and F. G. Yuan, The significance of effective modulus theory (homogenization) in composite laminate mechanics, Compos. Sci. Technol. 60, 2471-2488 (2000).
  4. J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton, FL, USA (1997).
  5. J. Aboudi, Mechanics of Composite Materials: A Unified Micro-Mechanical Approach. Elsevier, New York, USA (1991).
  6. C. T. Sun and R. S. Vaidya, Prediction of composite properties from a representative volume element, Compos. Sci. Technol. 56, 171-179 (1996).
  7. Y.W. Kwon and J.M. Berner, Micromechanicsmodel for damage and failure analysis of laminated fibrous composites, Engng Fract. Mech. 52, 231-242 (1995).
  8. S. J. Kim, J. Y. Cho and J. H. Kim, Finite element modeling and analysis of composite structures, in: Proc. 1st Korea-US Workshop on Compos. Mater., Seoul, Korea (1998).
  9. J. Y. Cho, J. H. Kim, C. S. Lee and S. J. Kim, Determination of composite material constants by direct numerical simulation, in: Proc. 12th Intl Conf. Compos. Mater., Paris, France (1999).
  10. S. J. Kim, C. S. Lee, H. J. Yeo, J. H. Kim and J. Y. Cho, Direct numerical simulation of composite structures, J. Compos. Mater. 36, 2765-2785 (2002).
  11. J. W. Park and S. H. Park, Optimal blade system design of a new concept VTOL vehicle using the departmental computing grid system, in: Supercomputing Conference 2004, S. Hwang, J. J. Moon, Y. Yoon and S. J. Kim, Pittsburgh, PA, USA (2004).
  12. D. Kenaga, J. F. Doyle and C. T. Sun, The characterization of boron aluminum in the nonlinear range as an orthotropic elastic plastic material, J. Compos. Mater. 21, 516-531 (1987).
  13. D. Fang, H. Qi and S. Tu, Elastic and plastic properties of metal-metal composites: geometrical effects of particles, Comput. Mater. Sci. 6, 303-309 (1996).
  14. M. M. Aghdam, D. J. Smith and M. J. Pavier, Finite element micromechanical modeling of yield and collapse behaviour of metal matrix composites, J. Mech. Phys. Solids 48, 499-528 (2000).
  15. T. H. Yoon, S. H. Paik, S. J. Shin and S. J. Kim, Computational material characterization of active fiber composite, in: 15th Intl Conf. Adaptive Struct. Technol., Atlantic Oakes By-the-Sea, Bar Harbor, Maine, USA (2004).
  16. V. Wickramasinghe and N. Hagood, Material characterization of active fiber composite actuators for active twist helicopter rotor blade applications, in: 41st AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA (2000).
  17. C. C. Chamis, Simplified composite micromechanics equations for hygral, thermal, and mechanical properties, SAMPE Quarterly 15, 14-23 (1984).
  18. P. Tan, L. Tong and G. P. Steven, Modeling approaches for 3D orthogonal woven composites, J. Reinf. Plast. Compos. 17, 545-577 (1998).
  19. S. J. Kim, C. S. Lee and H. Shin, Virtual experimental characterization of 3D orthogonal woven composite materials, in: 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Sheraton Seattle Hotel and Towers, Seattle, WA, USA (2001).
  20. P. Tan, L. Tong, G. P. Steven and T. Ishikawa, Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation, Composites, Part A: Appl. Sci. Manuf. 31, 259-271 (2000).
  21. J. P. Rodgers and N. W. Hagood, Hover testing of a 1/6th mach-scale CH-47D blade with integral twist actuation, in: 9th ICAST, Cambridge, MA, USA (1998).
  22. H. B. Strock,M. R. Pascucci,M. V. Parish, A. A. Bent and T. R. Shrout, Active PZT fibers, a commercial production process, in: SPIE's 6th Ann. Intl Sympos. on Smart Structures and Materials, Newport Beach, USA (1999).
  23. S. Abrate, Impact on laminated composite materials, Appl. Mech. Rev. 44, 155-190 (1991).
  24. W. J. Cantwell and J. Morton, The impact resistance of composite materials-a review, Composites 22, 347-362 (1991).
  25. M. O. W. Richardson and M. J. Wisheart, Review of low-velocity impact properties of composite materials, Composites, Part A: Appl. Sci. Manuf. 27, 1123-1131 (1996).
  26. F. Collombet, X. Lalbin and J. L. Lataillade, Impact behavior of laminated composites: physical basis for finite element analysis, Compos. Sci. Technol. 58, 463-478 (1998).
  27. C. F. Li, N. Hu, Y. J. Yin, H. Sekine and H. Fukunaga, Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model, Composites: Part A 33, 1055-1062 (2002).
  28. J. P. Hou, N. Petrinic, C. Ruiz and S. R. Hallett, Prediction of impact damage in composite plates, Compos. Sci. Technol. 60, 273-281 (2000).
  29. H. Y. Choi and F. K. Chang, A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact, J. Compos. Mater. 26, 2134-2169 (1992).
  30. H. Y. Choi, H. Y.Wu and F. K. Chang, A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact. Part II. Analysis, J. Compos. Mater. 25, 1012-1038 (1991).
  31. M. V. Hosur, M. R. Karim and S. Jeelani, Experimental investigations on the response of stitched/unstitched woven S2-glass/SC15 epoxy composites under single and repeated lowvelocity impact loading, Compos. Struct. 62, 89-102 (2004).
  32. N. K. Naik, Y. C. Sekher and S. Meduri, Damage in woven-fabric composites subjected to lowvelocity impact, Compos. Sci. Technol. 60, 731-744 (2000).
  33. J. N. Baucom and M. A. Zikry, Low-velocity impact damage progression in woven E-glass composite systems, Composites: Part A 36, 658-664 (2005).
  34. A. Benssousan, J. L. Lions and G. Papanicoulau, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, The Netherlands (1978).
  35. J. L. Lions, On some homogenization problems, Zeitschrift fur Angewandte Mathematik und Mechanik 62, 251-262 (1980).
  36. J. Fish and K. Shek, Multiscale analysis of composite materials and structures, Compos. Sci. Technol. 60, 2547-2556 (2000).
  37. K. K. Tamma and P. W. Chung, Woven fabric composites: developments in engineering bounds, homogenization and applications, Intl J. Numer. Method Engng 45, 1757-1790 (1999).<1757::AID-NME653>3.0.CO;2-O
  38. S. Ghosh, K. Lee and S. Moorthy, A multi-level computational model for multi-scale damage analysis in composite and porous materials, Intl J. Solid Struct. 38, 2335-2385 (2001).
  39. P. Raghavan and S. Ghosh, Concurrent multi-scale analysis of elastic composites by a multi-level computational model, Comput. Methods Appl. Mech. Engng 193, 497-538 (2004).
  40. N. J. Pagano and E. F. Rybicki, On the significance of effective modulus solutions for fibrous composites, J. Compos. Mater. 8, 214-218 (1974).
  41. T. I. Zohdi, J. T. Oden and G. J. Rodin, Hierarchical modeling of heterogeneous solids, Comput. Methods Appl. Mech. Engng 172, 3-25 (1999).
  42. J. O. Hallquist, LS-DYNA3D Theoretical Manual. Livermore Software Technology Corporation, Livermore, CA (1998).