Browse > Article
http://dx.doi.org/10.15231/jksc.2017.22.3.029

Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach  

Kim, Namsu (Department of Mechanical Engineering, Hanyang University)
Kim, Yongmo (Department of Mechanical Engineering, Hanyang University)
Publication Information
Journal of the Korean Society of Combustion / v.22, no.3, 2017 , pp. 29-34 More about this Journal
Abstract
The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.
Keywords
Large eddy simulation; Multi-environment probability density function; Flamelet generated manifolds; Swirled combustor; PRECCINSTA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids 16 (2004) 3670-3681.   DOI
2 G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Soonho, W.C. Gardiner, Jr., V.V. Lissianski, Z. Qin, GRI mechanism, version 3.0.; 1997. http://www.me/berkeley.edu/gri_mech. (accessed 01.01.16).
3 D.G. Goodwin, Cantera $C^{{+}{+}}$ user's guide, California Institute of Technology, California, U.S.A (2002).
4 J. Lee, S. Jeon, Y. Kim, Multi-environment probability density function approach for turbulent $CH_4/H_2$ flames under the MILD combustion condition, Combust. Flame 162 (2015) 1464-1476.   DOI
5 W. Meier, P. Weigand, X.R. Duan, R. Giezendanner-Thoben, Detailed characterziation of the dynamics of thermoacoustic pulsations in a lean premixed sxiwrl flame, Combust. Flame 150 (2007) 2-26.   DOI
6 OpenCFD Ltd, OpenFOAM user guide, version 2.2.0, 2011.
7 S. Roux, G. Lartigue, T. Poinsot, U. Meier, C. Berat, Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combust. Flame 141 (2005) 40-54.   DOI
8 J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin. P. Domingo, Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame 155 (2008) 247-266.   DOI
9 P. Wang, N.A. Platova, J. Frohlich, U. Maas, Large Eddy Simulation of the PRECCINSTA burner, Int. J. Heat Mass Transfer. 70 (2014) 486-495.   DOI
10 J. Lee and Y. Kim, Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transport Probability Density Function model, J. Korean Soc. Combust., 15 (2010) 15-21.
11 R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, 2003.
12 N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
13 C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. FLuid Mech. 504 (2004) 73-97.   DOI
14 J.A. van Oijen, L.P.H. de Goey, Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds, Combust. Sci. Tech. 161 (2000) 113-137.   DOI