DOI QR코드

DOI QR Code

Free Vibration Analysis based on HSDT of Laminated Composite Plate Structures Using Multi-scale Approach

멀티 스케일 접근 방법에 의한 복합소재 적층 판구조의 HSDT 기반 고유진동 해석

  • 이상열 (안동대학교 토목공학과)
  • Received : 2013.08.27
  • Accepted : 2013.12.23
  • Published : 2014.02.01

Abstract

This study carried out finite element vibration analysis of composite plate structures for construction using multi-scale approaches, which is based on the higher-order theory. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite plates for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

본 연구에서는 건설용 복합소재 구조에 적합한 미시-거시적 멀티 스케일 접근 방법을 제시하고 고차항 이론에 기반한 유한요소 진동 해석을 수행하였다. 본 연구에서 제시하는 멀티-스케일 접근 방법에 의한 유한요소 모델은 해석의 정확성 뿐 만 아니라 재료 조합의 영향을 정확히 보여준다는 점에서 장점을 갖는다. 적용된 유한요소 모델은 화이버의 함침비율의 변화에 따른 적층 판 구조의 고유진동을 상세 분석하기 위하여 개발되었다. 특히, 본 연구에서 제시한 결과는 적층 구조의 보강각도, 적층배열, 그리고 길이-두께비 등과 화이버 함침비율의 변화의 상호작용을 분석하는 데 초점을 두었다. 수치해석 결과로부터 화이버와 모재의 조합의 영향은 거시적 동적 특성을 조절할 수 있으므로 무시되면 안되며, 최적 배합을 통하여 건설용으로서 우수한 동적 구조성능을 만족하도록 설계할 수 있음을 보여준다.

Keywords

References

  1. Bathe, K. J. (1996). "The finite element procedures in engineering analysis." Prentice-Hall, Englewood Cliffs, NJ.
  2. Goupee, A. J. and Vel, S. S. (2007). "Multi-objective optimization of functionally graded materials with temperature-dependent material properties." Material Design, Vol. 28, pp. 1861-1879. https://doi.org/10.1016/j.matdes.2006.04.013
  3. Halpin, J. C. and Tsai, S. W. (1969). "Effects of environmental factors on composite materials." AFML-TR-67-423.
  4. Hewitt, R. L. and Malherbe, M. C. (1970). "An approximation for the longitudinal shear modulus of continuous fiber composites." Journal of Composite Materials, pp. 280-282.
  5. Ji, K. H., Paik, S. H. and Kim, S. J. (2004). "Impact analysis of composite plate by multiscale modeling." Proc. of Composite Materials, Korean Society for Composite Materials, pp. 67-70 (in Korean).
  6. Jin, K. K., Ha, S. K., Kim, J. H., Han, H. H. and Kim, S. J. (2010). "Life prediction of composite pressure vessels using multi-scale approach." Journal of The Korea Academia-Industrial cooperation Society, Vol. 11, No. 9, pp. 3176-3183 (in Korean). https://doi.org/10.5762/KAIS.2010.11.9.3176
  7. Jones, R. M. (1998) Mechanics of composite materials. Taylor & Francis, PA.
  8. Kruijf, N., Zhou, S., Li, Q. and Mai, Y. W. (2007). "Topological design of structures and composite materials with multiobjectives." International Journal of Solids and Structures, Vol. 44, pp. 7092-7109. https://doi.org/10.1016/j.ijsolstr.2007.03.028
  9. Kumar, A. and Shrivastava, R. P. (2005). "Free vibration of square laminates with delamination around a central cutout using HSDT." Composite Structures, Vol. 70, No. 3, pp. 317-333. https://doi.org/10.1016/j.compstruct.2004.08.040
  10. Lee, S. Y. and Chang, S. Y. (2010). "Dynamic Instability of delaminated composite structures with various geometrical shapes." Journal of Korean Society. for Advanced Composite Structures, Vol. 1, No. 1, pp. 1-8 (in Korean).
  11. Lee, S. Y. and Wooh, S. C. (2004). "Finite element vibration analysis of composite box structures using the high order plate theory." Journal of Sound and Vibration, Vol. 277, pp. 801-814. https://doi.org/10.1016/j.jsv.2003.09.024
  12. Lee, S. Y., Noh, M. H. and Park, T. (2007). "Nonlinear shear deformation effects on the free vibration of skew concrete plates with laminated composite face plates." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 27, No. 2-A, pp. 247-256 (in Korean).
  13. Singha, M. K. and Daripa, R. (2007). "Nonlinear vibration of symmetrically laminated composite skewplates by finite element method." International Journal of Non-Linear Mechanics, Vol. 42, pp. 1144-1152. https://doi.org/10.1016/j.ijnonlinmec.2007.08.001
  14. Wang, S. (1997). "Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation theory." Computers and Structures, Vol. 63, pp. 525-538. https://doi.org/10.1016/S0045-7949(96)00357-4
  15. Zuo, Z. H., Huang, X., Rong, J. H. and Xie, Y. M. (2013). "Multiscale design of composite materials and structures for maximum natural frequencies." Materials and Design, Vol. 51 pp. 1023-1034. https://doi.org/10.1016/j.matdes.2013.05.014