• Title/Summary/Keyword: Mu-Scan

Search Result 242, Processing Time 0.027 seconds

Robust Control of a Seeker Scan Loop System Using ${\mu}$-Systheis (${\mu}$-합성법을 이용한 탐색기 주사루프의 강인 제어)

  • Lee, Ho-Pyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.180-188
    • /
    • 1999
  • ${\mu}$-synthesis is applied to design a robust controller for a seeker scan loop system which has model uncertainty and is subject to a external disturbance due to abrupt missile maneuver. The issue of modelling a real-valued parametric uncertainty of a physical seeker scan loop system is discussed. The two-degree-of-frame control structure is employed to obtain better performance. It is shown that ${\mu}$-synthesis provides a superior framework for the robust control design of a seeker scan loop system which exhibits robust performance. The proposed robust control system satisfies design requirements, and especially shows good scanning performances for conical and rosette scan patterns despite parametric uncertainty in real system model.

  • PDF

Analysis of Occlusal Contacts Using Add-picture Method (Add-picture 방법을 이용한 교합접촉점 분석)

  • Park, Ko-Woon;Cho, Lee-Ra;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • The purpose of this study was to analyze the area of occlusal contact points using visual method. One subject was selected who had Angle Class I, normal dentition, without dental caries, periodontal disease and temporomandibular disorders. Forty times PVS impressions were taken and 10 pairs casts were fabricated using dental super hard stone. After mounting the casts with customized loading apparatus, 78.9kg/f force was loaded as a maximum biting force. In T-Scan method, occlusal contact points measurement was repeated twice. Then, using Photoshop program (Adobe photoshop CS3, Adobe. San Jose, USA), the pixels which indicated occlusal contact points by color was recognized, and the distribution of recognized pixels were calculated to area. In Add picture method, polyether bite material applied to the occlusal surface of the casts. Then, the image of the translucent areas was recorded and classified $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area by the amount of transmitted light. To acquire occlusal surface, the numbers of pixels from the photograph of the contact area indicated cast converted to $mm^2$. The mean occlusal contact area by two methods was statistically analyzed (paired t-test). Part of the red and pink area in T-Scan image were almost equivalent to the $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area in Add picture image. The distribution of occlusal contact points were similar, but the average area of occlusal contact points was wider in T-scan image (P<.05). Pink and red area in T-scan image was wider than $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$ area in Add picture image (P<.05), but similar to $0{\sim}60{\mu}m$area in Add picture image (P>.05). Occlusal contact points in T-scan image did not indicate real occlusal contact points. Occlusal contact areas in T-scan method were enlarged results comparing with those in Add picture method.

Marginal and internal fit of all ceramic crown using the replica technique and the triple-scan protocol (Replica technique과 Triple-scan protocol을 이용한 지르코니아 전부도재관의 변연 및 내면 적합도에 관한 비교 연구)

  • Shin, Mi-Sun;Lee, Jang-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.372-380
    • /
    • 2017
  • This study was conducted to compare the marginal and internal fit of all ceramic crown using the replica technique and the triple-scan protocol. Materials and methods: Twenty zirconia ceramic crowns were fabricated using titanium abutment model. All crowns were divided into two groups of 10 each, depending on the replica technique and the triple-scan protocol. The internal and marginal fit of 10 zirconia ceramic crowns were measured at 17 points for each specimen using the replica technique. The other 10 ceramic crowns were measured using the triple-scan protocol. Statistical analysis was performed by t-test (${\alpha}=.05$). Results: The mean and standard deviation of marginal and internal fit were significantly different between the replica technique ($49.86{\pm}29.69{\mu}m$) and triple-scan protocol ($75.35{\pm}64.73{\mu}m$, P<.001). The mean and standard deviation of internal fit except marginal fit were $58.38{\pm}31.77{\mu}m$ and $64.00{\pm}46.43{\mu}m$, respectively (P>.343). Conclusion: There was a statistically significant difference in the marginal fit measured by the two methods. However, there was no statistically significant difference in the internal fit between the two methods.

Lapping of Chemical Vapor Deposited Diamond Films Using copper Vapor laser (화학기상증착 다이아몬드 막의 레이저 평탄화)

  • 박영준;백영준
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.417-424
    • /
    • 1999
  • Laser lapping of diamond films is performed with focused beam of copper vapor laser. Both spherical and rod-shape laser beam are used. Diamond surface is scanned at various scan speeds(0,125, 0.5, 0.75 mm/sec) and baem shifts (5, 10, 20, 40, 100$\mu\textrm{m}$) At 0.125 mm/sec 10$\mu\textrm{m}$ scan condition the level difference of di-amond surface of about 700$\mu\textrm{m}$ over 20 mm is reduced to 200$\mu\textrm{m}$ In addition surface roughness is also im-proved from 3.53$\mu\textrm{m}$ to 2.47$\mu\textrm{m}$ at 5$\mu\textrm{m}$ beam shift. But at higher beam shift than 10$\mu\textrm{m}$ laser scan makes the surface rougher which is considered to be due to the non uniform spatial distribution of laser en-ergy. It is concluded that homogenized laser beam with high average power is needed for large area laser lapping of diamond films at appreciable rates.

  • PDF

Comparison of the accuracy of domestic dental intra-oral scanner(e-scanner) and model scanner (국산 치과용 구강스캐너(e-scanner)와 모델스캐너의 정확도 비교)

  • Kim, Busob;Kim, Jungho
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.53-61
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the discrepancy of scan process in dental intra oral scanner by comparing model scanner and anticipate possibility to introduce intra oral scan technique. Methods: 3D superimposition test was conducted to compare the scan discrepancy. The scanners used in this study are the e-oral scanner, the D750 model scanner, and the high precision CMM(3D Coordinate Measuring Machine). The standard of accuracy verification is ISO 5725-1; trueness and precision. Master model was manufactured by dental stone and scanned 5 times by intra oral, model scanner. Reference data was scanned 5 times by high accuracy CMM to evaluate the trueness. Results: Trueness of D750 scanner were $7.4{\mu}m$ $5.1{\mu}m$ $6.8{\mu}m$ at an abutment, an occluasal, a specific area. and trueness of e-scanner were $20.2{\mu}m$ $27.4{\mu}m$ $37.8{\mu}m$ at an abutment, an occluasal, a specific area. Precision of D750 scanner was $7.04{\mu}m$, e-scanner was $15.95{\mu}m$. Conclusion: When conducting in vitro test, The mean difference of trueness between e-scanner and D750 were $12.8{\mu}m$ at an abutment area, $22.3{\mu}m$ at an occlusal area, $31.0{\mu}m$ at a specific area and $8.91{\mu}m$ in precision. The scan discrepancies are within the range of clinical acceptance.

PERFORMANCE TEST FOR A PDS MICRODENSITOMETER MODEL 1010GMS

  • Hong, S.S.;Paek, W.G.;Lee, S.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.23-46
    • /
    • 1992
  • The electrical, mechanical and optical capabilities have been tested of the microdensitometer PDS 1010GMS at the Korea Astronomy Observatory. The highest stage of scan speed 255 csu (conventional speed unit) is measured to be 47 mm/s. At this speed the position is displaced by $4{\mu}m$ to the direction of scanning and the density is underestimated by $0.4{\sim}0.7D$. Standard deviation in the measured density is proportional to $A^{-0.46}$, where A is the area of scan aperture. The accuracy of position repeatability is ${\pm}1{\mu}m$, and that of density repeatability is ${\pm}(0.003{\sim}0.03)D$. Callier coefficient is determined to be 1.37; the semispecular density is directly proportional to the diffuse density up to 3.5D. Because the logarithmic amplifier has a finite response time, the densities measured at high scan speeds are underestimated to the degree that speeds higher than 200 csu are inadequate for making an accurate astronomical photometry. After power is on, an about 5 hour period of warming is required to stabilize the system electrically and mechanically as well. On the basis of this performance test, we have determined the followings as the optimum scan parameters for the astronomical photometry: For the scan aperture $10\;\sim\;20{\mu}m$ is optimal, and for the scan speed. $20\;{\sim}\;50$ csu is appropriate. These parameter values are chosen in such a way that they may keep the density repeatability within ${\pm}0.01D$, the position displacement under $1{\mu}m$, and the density underestimation below 0.1D even in high density regions.

  • PDF

The effect analysis of birefringence of plastic f$\heta$ Iens on the beam diameter (플라스틱 f$\heta$렌즈의 복굴절이 결상빔경에 미치는 영향분석)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • We measure a beam diameter of scan and sub-scan direction of LSD (Laser Scanning Urnt) which uses $fheta$ lens produced by injecLion molding method as a scanning lens. While the measured beam diameter in scan direction, which is $62muextrm{m}$ to $68\mu\textrm{m}$, shows similar size comparing to the design beam diameter, the sub-scan beam diameter shows sIzable beam diameter deviation as much as 37 11m ranging from $78\mu\textrm{m}$ to $115\mu\textrm{m}$. Injection molding lens has the surface figure error due to the shrinkage III the cooling time and the internal distortion (birefringence) due to the uneven cooling conditIOn so that these bring about wavefront aberration (i.e., the enlargement of beam size), and are eventually expre~sed as the deterioration of the pdnting image. In this paper. we first measure and analyze beam diameter, birefringence (polanzation ratio), and asphedcal figure error of mIens in order to know the principle cause of the beam diameter deviation in sub-scan directIOn. And Lhen. through the analysis of a designed depth of focus and a calculated field curvature (imaging position of the optical axis directIon) using the above figure elTor data, we know Lhat the birefringence IS the main factor of sizable beam diameter deVIation in sub-scan direction. ction.

  • PDF

Characteristics of High Frequency Ultrasonic Transducer Employing Polyvinylidene Fluoride and Detectability of Flaw in Cr-Ni Steel (PVDF 수침용 고주파수 초음파 탐촉자의 검출장과 Cr-Ni 강에서의 결함 검출능 측정)

  • Kim, Byoung-Geuk;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Recently high frequency ultrasonic transducers to employ polyvinylidene fluoride(PVDF) or polyvinylidene fluoride trifluoroethylene P(VDF-TrFE) have been used to detect small flaws in immersion testing. The detection field depending on the water path between the transducer and a specimen and the path in a tested specimen was measured using a PVDF transducer with nominal frequency 80MHz. Also, C-scan and B-scan were performed for the specimens made of Cr-Ni steel with the artificial flaws, the flat-bottom holes with diameter ranging from $50{\mu}m$ to $560{\mu}m$ at 12mm depth. As the result, the flaws with diameter larger than $280{\mu}m$ were detected, but the flaws with the ratio of diameter to wavelength smaller than about 0.48 were not detected. That the smaller flaws could not be detected was attributed to the attenuation of high frequency components in the steel specimens.

  • PDF

Evaluation of Radiation Exposure to Nurse on Nuclear Medicine Examination by Use Radioisotope (방사성 동위원소를 이용한 핵의학과 검사에서 병동 간호사의 방사선 피폭선량 평가)

  • Jeong, Jae Hoon;Lee, Chung Wun;You, Yeon Wook;Seo, Yeong Deok;Choi, Ho Yong;Kim, Yun Cheol;Kim, Yong Geun;Won, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Purpose Radiation exposure management has been strictly regulated for the radiation workers, but there are only a few studies on potential risk of radiation exposure to non-radiation workers, especially nurses in a general ward. The present study aimed to estimate the exact total exposure of the nurse in a general ward by close contact with the patient undergoing nuclear medicine examinations. Materials and Methods Radiation exposure rate was determined by using thermoluminescent dosimeter (TLD) and optical simulated luminescence (OSL) in 14 nurses in a general ward from October 2015 to June 2016. External radiation rate was measured immediately after injection and examination at skin surface, and 50 cm and 1 m distance from 50 patients (PET/CT 20 pts; Bone scan 20 pts; Myocardial SPECT 10 pts). After measurement, effective half-life, and total radiation exposure expected in nurses were calculated. Then, expected total exposure was compared with total exposures actually measured in nurses by TLD and OSL. Results Mean and maximum amount of radiation exposure of 14 nurses in a general ward were 0.01 and 0.02 mSv, respectively in each measuring period. External radiation rate after injection at skin surface, 0.5 m and 1 m distance from patients was as following; $376.0{\pm}25.2$, $88.1{\pm}8.2$ and $29.0{\pm}5.8{\mu}Sv/hr$, respectively in PET/CT; $206.7{\pm}56.6$, $23.1{\pm}4.4$ and $10.1{\pm}1.4{\mu}Sv/hr$, respectively in bone scan; $22.5{\pm}2.6$, $2.4{\pm}0.7$ and $0.9{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. After examination, external radiation rate at skin surface, 0.5 m and 1 m distance from patients was decreased as following; $165.3{\pm}22.1$, $38.7{\pm}5.9$ and $12.4{\pm}2.5{\mu}Sv/hr$, respectively in PET/CT; $32.1{\pm}8.7$, $6.2{\pm}1.1$, $2.8{\pm}0.6$, respectively in bone scan; $14.0{\pm}1.2$, $2.1{\pm}0.3$, $0.8{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. Based upon the results, an effective half-life was calculated, and at 30 minutes after examination the time to reach normal dose limit in 'Nuclear Safety Act' was calculated conservatively without considering a half-life. In oder of distance (at skin surface, 0.5 m and 1 m distance from patients), it was 7.9, 34.1 and 106.8 hr, respectively in PET/CT; 40.4, 199.5 and 451.1 hr, respectively in bone scan, 62.5, 519.3 and 1313.6 hr, respectively in myocardial SPECT. Conclusion Radiation exposure rate may differ slightly depending on the work process and the environment in a general ward. Exposure rate was measured at step in the general examination procedure and it made our results more reliable. Our results clearly showed that total amount of radiation exposure caused by residual radioactive isotope in the patient body was neglectable, even comparing with the natural radiation exposure. In conclusion, nurses in a general ward were much less exposed than the normal dose limit, and the effects of exposure by contacting patients undergoing nuclear medicine examination was ignorable.

  • PDF

Process Analysis of Melting Behaviors in Selective Laser Melting Process (선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석)

  • Sung, M.Y.;Joo, B.D.;Kim, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.