• Title/Summary/Keyword: Moving Body

Search Result 624, Processing Time 0.027 seconds

Unstructured Moving-Grid Finite-Volume Method for Unsteady Shocked Flows

  • Yamakawa M.;Matsuno K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.86-87
    • /
    • 2003
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be changed and deformed with time if we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

  • PDF

Unsteady Separation Simulation of Missile by Using Moving Grid (움직이는 격자계를 이용한 유도탄의 비정상 분리 유동해석)

  • Kang, Kyoung-Tai;Lee, Bok-Jik;Ahn, Chang-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.47-52
    • /
    • 2007
  • Missile staging and airframe separation simulation were performed by using a numerical technique for simulating the dynamics of multiple moving bodies. A 6DOF model is fully integrated into the CFD solution procedure to determine the body dynamics. Chimera grid technique offered efficient CFD simulation of multiple moving bodies. Through this simulation the safety of deployed staging and airframe separation mechanism was verified.

Effects of 119 Paramedics Wearing Personal Protective Equipment on Blood Pressure, Pulse, and Breathing (119구급대원의 개인보호장비 착용이 혈압·맥박·호흡에 미치는 영향)

  • Yi, Seung-Ku;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.89-96
    • /
    • 2021
  • This study analyzed the physical changes in 119 paramedics transporting equipment at the emergency site and performing post-cardiopulmonary resuscitation through experiments. First, the average heart rate increased by about 25 times comparing CPR was performed without physical load and with personal protective equipment after moving equipment. In the third quartile, it increased to about 27 times. Second, when CPR was performed without physical load, and CPR was performed after moving the equipment with personal protective equipment, both the body temperature was raised and the rising body temperature was measured within normal body temperature. Third, the change in respiration rate increased by 7 times on average comparing CPR was performed without physical load and CPR was performed after moving the equipment while wearing personal protective equipment. In the third quartile, it increased to about 11 times. Finally, the change in blood pressure increased by 26.6 mmHg on average comparing CPR was performed without physical load and with wearing personal protective equipment after moving the equipment, and increased by 31.2 mmHg on average in the third quartile.

Experimental and Numerical Study on the Characteristics of Free Surface Waves by the Movement of a Circular Cylinder-Shaped Submerged Body in a Single Fluid Layer

  • Jun-Beom Kim;Eun-Hong Min;Weoncheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Analyzing the interactions of free surface waves caused by a submerged-body movement is important as a fundamental study of submerged-body motion. In this study, a two-dimensional mini-towing tank was used to tow an underwater body for analyzing the generation and propagation characteristics of free surface waves. The magnitude of the maximum wave height generated by the underwater body motion increased with the body velocity at shallow submerged depths but did not increase further when the generated wave steepness corresponded to a breaking wave condition. Long-period waves were generated in the forward direction as the body moved initially, and then short-period waves were measured when the body moved at a constant velocity. In numerical simulations based on potential flow, the fluid pressure changes caused by the submerged-body motion were implemented, and the maximum wave height was accurately predicted; however, the complex physical phenomena caused by fluid viscosity and wave breaking in the downstream direction were difficult to implement. This research provides a fundamental understanding of the changes in the free surface caused by a moving underwater body.

Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method (FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사)

  • Shin, Sangmook;Kim, In Chul;Kim, Yong Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.

Research on moving averaged ERD of EEG by the movement of body limbs (동작에 의한 뇌파의 이동평균성 ERD(Event Related Desynchronization)에 관한 연구)

  • 황민철;최철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1252-1254
    • /
    • 2004
  • BMI(brain machine interface) has been recently applied to give a disabled person mobility. This study is to determine the effective EEG parameters for predicting the movement moment of body limbs thought analysis of moving averaged ERD. The results showed that the proposed method for classifying EEG for predicting the movement seemed to be better than the classical method of determining ERD.

  • PDF

NUMERICAL ANALYSIS OF FLOW AROUND A SUBMERGED BODY NEAR A PYCNOCLINE USING THE GHOST FLUID METHOD ON UNSTRUCTURED GRIDS (비정렬 격자에서 Ghost Fluid 법을 이용한 밀도약층 주위 수중운동체에 의한 유동 해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.70-76
    • /
    • 2005
  • A two-layer incompressible time-accurate Euler solver is applied to analyze flow fields around a submerged body moving at a critical speed near a pycnocline. Discontinuities in the dependent variables across the material interface are captured without any dissipation or oscillation using the ghost fluid method on an unstructured grid. It is shown that the material interlace has significant effects on forces acting on a submerged body moving near a pycnocline regardless of the small difference in densities of two layers. Contrary to the shallow water waves, a submerged body can reach a critical speed at very low Froude number due to the small difference in the densities of the two layers.

On the Vertical Plane Dynamics Modeling and Depth Control of a Submerged Body Moving beneath Free Surface (수면 근처에서 운동하는 잠수체의 수직면 운동 모델링 및 심도 제어)

  • Yeo, Dong-Jin;Rhee, Key-Pyo;Park, Jeong-Yong;Choi, Ju-Hyuck
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.647-655
    • /
    • 2006
  • In this paper, submerged body dynamics model in vertical plane which can include the effect of free surface and wave is suggested to simulate the motions of submerged body moving beneath free surface precisely. A controller is designed, which can maintain a constant depth below the mean sea level and minimize the pitch angle. Numerical simulations show that the designed controller is effective on depth keeping and minimizing pitch angle in regular waves and irregular waves.

Integrating Study of Kidney on Left & Life Gate on Right(左腎右命門) and Moving Energy between two kidneys(腎間動氣) (좌신우명문(左腎右命門)과 신간동기(腎間動氣)의 통합적 이해를 위한 연구)

  • Kim, Jin-Ho
    • Journal of Korean Medical classics
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2013
  • Objective : There was no attempt to understand Moving Energy between two kidneys(腎間動氣) and Kidney on Left & Life Gate on Right(左腎右命門) by integration progress. So I have faced to study based on two parts with concerning as clues. One is 'Life Right (左 右)' and the other is 'Between(間)'. Methods : Revealing the source of the origin, Nanjingbenyi(難經本義) is given on the basis. Take a close look at publications related to Nanjing(難經) which is about Kidney on Left & Life Gate on Right and Moving Energy between two kidneys. Take a close look at Kidney, the Life Gate and Moving Energy between two kidneys. Look see the three-dimensional uplift movement of Gi(氣). Results : In Neijing(內經) and Nanjing, the basic point of view for Kidney is the same. That is explained in line with attributes of convergence(收斂). 'Life Gate(命門)' is a term to express the divergence feature(發散機能) of kidney. Moving Energy between two kidneys is used to mean the mainspring of human body activity. The Gi in human body loses altitude turning left(左旋而下降) and gains height turning right(右旋而上升). Conclusion : Watching on functional aspect, there are two names for kidney. One is 'Kidney(腎)' which collects the losing altitude turning left and the other is 'Life Gate' which rises turning right. Moreover, the fundamental power that effectuate the uplift movement is Moving Energy between two kidneys. This kind model is a way that can be understood syntagmatically the Kidney on Left & Life Gate on Right and the Moving Energy between two kidneys without any gainsaying the original of Nanjing.

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF