• Title/Summary/Keyword: Mouse liver

Search Result 737, Processing Time 0.03 seconds

자호억간탕액(紫胡抑肝湯液)이 백서(白鼠) 간세포(肝細胞)에 미치는 영향(影響)

  • Park, Yeong-Gyu
    • The Journal of Korean Medicine
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 1980
  • In Order to investigate the effects of Bupleium falcatum Linne on the liver disease 120 healthy mouse(20mg) Were injected carbon tetre chloride of 12ml1kg The mice of injection Were alloted to two groups, Control group were administered flesh water and exprimetnal group were administered Bupleium falcatum linne and Pathological appearance of the liver were observed.

  • PDF

Effects of Chitosanoligosaccharide on the Mouse Hepatotoxicity Induced by Cadmium (카드뮴으로 유발된 생쥐 간독성에 대한 키토산올리고당의 효과)

  • Yoon, Jung-Sik;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.361-376
    • /
    • 2002
  • This research was conducted to determine the effects of chitosanoligosaccharide on liver poisoning induced by cadmium (Cd). Three groups of mice were used in this research. The group was only injected with cadmium (5.0 mg/kg; i.p.) (group Cd) and the other group was injected with cadmium and chitosanoligosaccharide (0.5% solution) at the same time (group Cd+Chi). In order to investigate the inhibitory action of chitosanoligosaccharide on liver damage, cadmium concentration in liver tissues and metallothionein (MT) concentration were relatively measured. In addition, histological observations were made to determine the morphologic injury of liver tissues. Cadmium concentration in liver tissues was drastically lower in groups Cd+Chi than in group Cd. MT concentration in liver tissues was lower in group Cd than in groups Cd+Chi. As the result of electron microscopic observation, mitochondria in group Cd showed a severe swelling phenomenon, RER fragment and ribosome dropout. However, in groups Cd+Chi, mitochondria with high electron density were distributed and RER forming a typical lamellae with ribosome was observed. From these results, cadmium toxicity on rat liver tissues could be lessened by chitosanoligosaccharide.

Effects of Oenanthe javanica Extracts on Mercury Accumulation in Organs of the Mouse (미나리 추출물이 마우스의 장기내 수은 축적에 미치는 영향)

  • 조현욱;김명훈;황규영;민병운;박종철;김종홍
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This study was performed to investigate the antitoxic effect of Oenanthe javanica extracts on orally administered mercury compound. Adult male ICR mice were exposed to methylmercuric chloride (CH3HgCl)through drinking water. The control, mercury treated and Oenanthe javanica treated groups not showed significant differences in mean body and organ weights of mice. The distribution of mercury in the cerebellum, kidney, liver and spleen of the mouse were examined according to a histochemical mathod. Grains of mercury traces were located in the purkinje cell and granular layers of the cerebellum and cortex of kidney respectively. Lesser staining of the grains was seen in the collecting tubules of medulla. in the liver, mercury accumulations were present primarily in the hepatocytes around portal area containing interlobular bile duct, artery and portal vein. Also grains of mercury traces were accumulated in the white pulp of the spleen. In the group of Oenanthe javanica extracts, staining intensity of mercury was decreased in the Purkinje cell layer of cerebellum and in the portal area of liver respectively. Staining patterns in kidney and spleen of extracts group were similar to that of only mercury treated group.

  • PDF

Inhibition of Free Radical-Induced Lipid Oxidation by the Extract from Submerged-Liquid Culture of Mushrooms in the Medium Containing Mulberry Tree Powders (뽕나무가루 첨가 배지에서 배양한 버섯균사체 배양물의 자유라디칼 유도 산화 억제)

  • 김석종;임동길;박철우;세르보로다메;형석원;이강권;김정옥;하영래
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.255-261
    • /
    • 2004
  • Antioxidant activity of extracts from the submerged-liquid culture of mushrooms was measured using two systems : linoleic acid and mouse liver microsomes induced by various free radical sources. Mushrooms of Pleurotus ostreatus (Neutari), Phellinus linteus (Sanghwang), Paecilomyces japonicus (Dongchunghacho), Hericicum erinacium (Norugungdengyee) and Agaricus blazei (Shinryeong) in 1% mulberry tree powder-supplemented medium were incubated in a shaking incubator (200 rpm, $25^{\circ}C$) for 3 days. Hot water extracts of mycelial cultures were freeze-dried, followed by fractioning with hexane, chloroform, ethylacetate and butanol in the order. Antioxidant activity of each sample was examined in free radical-induced linoleic acid oxidation in phosphate-buffered saline (PBS ) solution by measuring the amount of malonaldehyde (MA), and mouse liver microsomal systems by measuring the amount of thiobarbituric acid reactive substances (TBARS). In linoleic acid oxidation system, hot water extracts from the cultures of Pleurotus ostreatus, Phellinus linteus, and Paecilomyces japonicus exhibited stronger antioxidant activity than aqueous or butanol fraction and the combined fraction of hexane, chloroform and ethylacetate, but the hot water extract from Pleurotus ostreatus culture was the strongest activity. The antioxidant activity of the hot water extract from Pleurotus ostreatus culture was stronger than any other fractions in mouse microsomal system. These results suggest that hot water extract of Pleurotus ostreatus culture, and the cultures of Phellinus linteus and Paecilomyces japonicus could be useful for functional materials to reduce the oxidation of lipids in food systems induced by free radicals.

The Effect of Autoxidized Methyl Linoleate on the Lipid Metabolism in the Mouse (Chronic Toxicity) (자동산화 Methyl Linoleate가 Mouse의 지질대사에 미치는 영향(만성독성))

  • Paik, Tai-Hong;Lee, Keun-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.35-40
    • /
    • 1986
  • In order to investigate the effect of autoxidized methyl linoleate (AOML) on the lipid metabolism in the mouse, we administered the fixed dosage of AOML to mice onece per day for 20 days by using stomach tube. And the following results were obstained. The amounts of triglycerides, phospholipids, total cholesterol and TBA values in the blood serum of test group were increased more than these of normal group. And according to the electrophoresis, the amount of albumin in test group was increased about 22% in comparision with normal group but the amount of VLDL and LDL was decreased about 70% and 30% respectively. The POV, COV and TBA values in the liver of test group were significantly increased more than these in normal group. And also the amounts of triglycerides, phospholipids and total cholesterol in test group were slightly increased. And the damage of hepatic cells and the accumulation of fats were observed as the morphorogical changes in the liver of test group. Form these results obtained, we conclude that the autoxidized methyl linoleate fed in mice influences at lipid metabolism on the blood and the liver.

The Effects of Haedoksamul-tang on Oxidative Stress and Hyperlipidemia in LPS-induced ICR Mouse (해독사물탕(解毒四物湯)이 LPS 유도 ICR mouse의 산화스트레스 및 고지혈증에 미치는 효과)

  • Choi, Gyu-ho;Jung, Yu-sun;Shin, Hyeon-cheol
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.77-89
    • /
    • 2016
  • Objectives: The present study was conducted to examine whether Haedoksamul-tang (HS), a traditional oriental herbal medicine, have beneficail effects on anti-inflammation and dyslipidemia in lipopolysaccharide (LPS)-induced ICR mouse. Methods: Twenty four 8-week old male ICR mouse were divided into four groups: normal untreated; LPS treatment only; HS 10 mg/kg plus LPS treatment; and HS 30 mg/kg plus LPS treatment. HS was orally administered per day for 2days. Twenty-four hours after LPS injection (10 mg/kg/day, i.p.), all the mice were sacrificed, and serological changes were evaluated. The levels of nuclear factor-${\kappa}B$ (NF-${\kappa}B$), sterol regulatory element-binding transcription protein 1 (SREBP-1) activity and cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), acetyl-CoA carboxylase a (ACCa) expression were analyzed in Western blot analysis. Results: HS inhibited oxidative stress in the liver of LPS-induced ICR mice. The LPS-induced ICR mice exhibited the increase of NF-${\kappa}B$ activity and COX-2, iNOS, TNF-a, MCP-1 expressions in the liver, while HS treatment significantly inhibited them. Moreover, The administration of HS significantly decreased the elevated serum triglyceride and down-regulated the levels of SREBP-1, ACCa in the liver of LPS-induced ICR mice. Conclusions: In conclusion, HS could have hepato-protective effects against the oxidative stress-related inflammation and abnormal lipid metabolism.

Toxicity of the Puffer fish, Takifugu pardalis (Jolbok) and Takifugu niphobles (Bokseom) from Coastal Area of Korea (한국 연안산 졸복(Takifugu pardalis)과 복섬(Takifugu niphobles)의 독성)

  • Kim, Ji-Hoe;Son, Kwang-Tae;Mok, Jong-Soo;Oh, Eun-Gyoung;Hwang, Hye-Jin;Yu, Hong-Sik;Lee, Hee-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.5
    • /
    • pp.269-275
    • /
    • 2007
  • The toxicity of two species of puffer fish, Takifugu pardalis and T. niphobles, collected from the coastal regions of Korea was determined using a mouse bioassay. In T. pardalis collected at Tongyeong, the proportion of toxic specimens containing ${\geq}10MU/g$ exceeded 90% for the skin, fins, liver, intestine, ovary, and gallbladder, 11.1% for the testis, and 6.9% for the muscle. In each of the organs, the highest toxin levels were several tens (14-39) of mouse units (MU) per gram in the muscle, testis, and eyeball, but thousands (1,444-5,755) of MU per gram in the skin, liver, intestine, ovary, and gallbladder. The organs of T. pardalis exhibited remarkable variation in toxicity. In T. niphobles, the proportion of toxic specimens exceeded 90% for the ovary and skin, 60-80% for the fins, liver, intestine, and gallbladder, and 4.5% for the muscle; no toxicity was detected in the testis or eyeball using the mouse bioassay. The highest toxin levels were thousands (2,291-7,777) of MU per gram in the liver, intestine, ovary, and gallbladder, hundreds(146-328) of MU per gram in the skin and fins, and 18 MU/g in the muscle. Takifugu niphobles toxicity also exhibited remarkable regional variation. The toxicity in the edible muscle of T. pardalis and T. niphobles was at acceptable levels for human consumption, while the toxicity of the skin of both species of puffer fish was very high, so that care must be taken when used for human consumption.

Protective Effect of Joo-Juk on Acetaminophen-induced Liver Damage in Mouse Model (Acetaminophen 유도 간 손상에 대한 주적(酒敵)의 보호 효과)

  • Kim, Sung-Zoo;Kang, Hyung-Sub;Shin, Jae-Suk;Xie, Guang-Hua;Huh, Jin;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2009
  • Acetaminophen (AP) is widely used as an over-the-counter analgesic and antipyretic drug. AP-induced hepatotoxicity is a common consequence of AP overdose and may lead to acute liver failure. In this study, we investigated the liver damage in mice using single dose (300 mg/kg) of AP and the possible protective effects of administration (50-200 mg/kg body weight) of Joo-Juk on acetaminophen-induced liver damage in mice. The alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were determined in the plasma of mice. The effect of Joo-Juk on lipid peroxidation product thiobarbituric reacting substances (TBARS) and some antioxidant enzymes superoxide dismutase (SOD), catalase, d-aminolevulinate dehydratase ($\sigma$-ALA-D) activities, and gluthathione peroxidase (GPx), were also evaluated in the mouse liver homogenate. AP caused liver damage as evident by statistically significant increased in plasma activities of AST and ALT. There were statistically significant losses in the activities of SOD, catalase, $\sigma$-ALA-D, and GPx and an increase in TBARS in the liver of AP-treated group compared with the control group. However, Joo-Juk was able to counteract these effects. These results suggest that Joo-juk can act as hepato-protectant against AP toxicity and is a good candidate for further evaluation as an effective chemotherapeutic agent.

  • PDF

A Study on Toxicity Bio-markers of a Mouse using Combustion Gas SO2 generated from Fire (마우스(mouse)를 이용한 건축물 마감재료 연소가스 SO2의 독성생체지표 연구)

  • Rie, Dong-Ho;Cho, Nam-Wook;Choi, Soon-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • This study was carried out to observe the impacts of a mouse's inhalation of toxic gas SO2 generated from combustion on its organs by different concentrations. As for research methods: First, after concentrations of SO2 generation from combustion had been set to three: low (10.4 ppm), middle (24.9 ppm) and high (122 ppm) through Gas Toxicity Testing Method (KS F 2271) and SO2 combustion gas was exposed to eight mice in each concentration. Five mice that were able to move based on LD50, a criterion, which sets the down time of a mouse's average behaviors to over 9 minutes, were randomly selected in each concentration, and they were set up as the subjects of the study on toxicity bio-markers. Second, tissues were taken from heart, liver, lungs, spleen and the thymus gland of the mice selected in each concentration and a pathological examination of them was carried out. As a result, microvascular congestion appeared in the heart, and cell necrosis, cortex congestion and tubule medulla congestion, etc. in each concentration were observed in addition to vascular congestion in liver, lungs, spleen and the thymus gland. Also, it was found that the higher the concentrations of SO2 exposure is, the greater, the changes in the organs get. Through this study, SO2 of various toxic gases generated from fire turned out to affect the tissues of each organ of a mouse, it is expected that the toxic gases may greatly affect human body in case of actual fire, and this study is evaluated as having a significance as a basic data on inhalation toxicity assessment of toxic substances generated in combustion.

Gene Expression Profiles in Genetically Different Mice Infected with $Toxoplasma$ $gondii$: ALDH1A2, BEX2, EGR2, CCL3 and PLAU

  • Ismail, Hassan Ahmed Hassan Ahmed;Quan, Juan-Hua;Wei, Zhou;Choi, In-Wook;Cha, Guang-Ho;Shin, Dae-Whan;Lee, Young-Ha;Song, Chang-June
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • $Toxoplasma$ $gondii$ can modulate host cell gene expression; however, determining gene expression levels in intermediate hosts after $T.$ $gondii$ infection is not known much. We selected 5 genes ($ALDH1A2$, $BEX2$, $CCL3$, $EGR2$ and $PLAU$) and compared the mRNA expression levels in the spleen, liver, lung and small intestine of genetically different mice infected with $T.$ $gondii$. ALDH1A2 mRNA expressions of both mouse strains were markedly increased at day 1-4 postinfection (PI) and then decreased, and its expressions in the spleen and lung were significantly higher in C57BL/6 mice than those of BALB/c mice. BEX2 and CCR3 mRNA expressions of both mouse strains were significantly increased from day 7 PI and peaked at day 15-30 PI ($P$<0.05), especially high in the spleen liver or small intestine of C57BL/6 mice. EGR2 and PLAU mRNA expressions of both mouse strains were significantly increased after infection, especially high in the spleen and liver. However, their expression patterns were varied depending on the tissue and mouse strain. Taken together, $T.$ $gondii$-susceptible C57BL/6 mice expressed higher levels of these 5 genes than did $T.$ $gondii$-resistant BALB/c mice, particularly in the spleen and liver. And ALDH1A2 and PLAU expressions were increased acutely, whereas BEX2, CCL3 and EGR2 expressions were increased lately. Thus, these demonstrate that host genetic factors exert a strong impact on the expression of these 5 genes and their expression patterns were varied depending on the gene or tissue.