• Title/Summary/Keyword: Motion Data Processing

Search Result 398, Processing Time 0.028 seconds

Restoring Motion Capture Data for Pose Estimation (자세 추정을 위한 모션 캡처 데이터 복원)

  • Youn, Yeo-su;Park, Hyun-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.5-7
    • /
    • 2021
  • Motion capture data files for pose estimation may have inaccurate data depending on the surrounding environment and the degree of movement, so it is necessary to correct it. In the past, inaccurate data was restored with post-processing by people, but recently various kind of neural networks such as LSTM and R-CNN are used as automated method. However, since neural network-based data restoration methods require a lot of computing resource, this paper proposes a method that reduces computing resource and maintains data restoration rate compared to neural network-based method. The proposed method automatically restores inaccurate motion capture data by using posture measurement data (c3d). As a result of the experiment, data restoration rates ranged from 89% to 99% depending on the degree of inaccuracy of the data.

  • PDF

An Interactive Character Animation and Data Management Tool (대화형 캐릭터 애니메이션 생성과 데이터 관리 도구)

  • Lee, Min-Geun;Lee, Myeong-Won
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.63-69
    • /
    • 2001
  • In this paper, we present an interactive 3D character modeling and animation including a data management tool for editing the animation. It includes an animation editor for changing animation sequences according to the modified structure of 3D object in the object structure editor. The animation tool has the feature that it can produce motion data independently of any modeling tool including our modeling tool. Differently from conventional 3D graphics tools that model objects based on geometrically calculated data, our tool models 3D geometric and animation data by approximating to the real object using 2D image interactively. There are some applications that do not need precise representation, but an easier way to obtain an approximated model looking similar to the real object. Our tool is appropriate for such applications. This paper has focused on the data management for enhancing the automatin and convenience when editing a motion or when mapping a motion to the other character.

  • PDF

Real-time system control for the 6-DOF simulation (6-DOF 시뮬레이터의 real-time 시스템 제어에 관한 연구)

  • 김영대;김충영;백인철;민성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.17-21
    • /
    • 1989
  • 6-DOE simulator system is designed to real-time processing for motion control, data acquisition, image generation and image processing etc.. In this paper, we introduce hardware and software design technologies for distributed processing, event-trapping, system monitoring and time scheduling procedure in 6-DOF simulator system design.

  • PDF

Enhancement of H.264/AVC Encoding Speed and Reduction of CPU Load through Parallel Programming Based on CUDA (CUDA 기반의 병렬 프로그래밍을 통한 H.264/AVC 부호화 속도 향상 및 CPU 부하 경감)

  • Jang, Eun-Been;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • In order to enhance encoding speed in dynamic image encoding using H.264/AVC, reducing the time for motion estimation which takes a large portion of the processing time is very important. An approach using graphics processing unit(GPU) as a coprocessor to assist the central processing unit(CPU) in computing massive data, will be a way to reduce the processing time. In this paper, we present an efficient block-level parallel algorithm for the motion estimation(ME) on a computer unified device architecture(CUDA) platform developed in general-purpose computation on GPU. Experiments are carried out to verify the effectiveness of the proposed algorithm.

An efficient architecture for motion estimation processor satisfying CCITT H.261 (CCITT H.261를 위한 효율적인 구조의 움직임 추정 프로세서 VLSI 설계)

  • 주락현;김영민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.30-38
    • /
    • 1995
  • In this paper, we propose an efficient architecture for motion estimation processor which performs one of essential functions in moving picture coding algorithms. Simple control mechanism of data flow in register array which stores pixel data, parallel processing of pixel data and pipelining scheme in arithmetic umit allow this architecture to process a 352*288 pixel image at the frame rate of 30fs, which is compatable with CCITT standard H.261.

  • PDF

Implementation of Integration Module of Vision and Motion Controller using Zynq (Zynq를 이용한 비전 및 모션 컨트롤러 통합모듈 구현)

  • Moon, Yong-Seon;Roh, Sang-Hyun;Lee, Young-Pil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 2013
  • Recently the solution integrated of vision and motion controller which are important element in automatiomn system has been many developed. However typically such a solutions has a many case that integrated vision processing and motion control into network or organized two chip solution on one module. We implement one chip solution integrated into vision and motion controller using Zynq-7000 that is developed recently as extended processing platform. We also apply EtherCAT to motion control that is industrial Ethernet protocol which have compatibility for open standardization Ethernet in order to control of motion because EtherCAT has a secure to realtime control and can treat massive data.

An Efficient Generation of Walking and Running Motion on Various Terrains (다양한 지형에서의 걷기와 달리기 동작의 효율적 생성)

  • Song Mi-Young;Cho Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.187-196
    • /
    • 2006
  • In 3D animation most people adjust the moving motion of their characters on various terrains by using motion data acquired with the motion capture equipment. The motion data can be used to present real human motions naturally, but the data must be captured again to apply to the different terrains from those given at acquiring mode. In addition, there would be a difficulty when applying the data to other characters, in that case the motion data must be captured newly or the existing motion data must be heavily edited manually. In this paper we propose a unified method to generate human motions of walking and running for various terrains such as flat plane, inclined plane, stairway and irregular face. With these methods we are able to generate human motions controlled by the parameters : body height, moving speed, stride, etc. In the proposed methods, the positions and angles of joint can be calculated by using inverse kinematics, and we calculate the trajectory of the swing leg and pelvis according to the cubic spline. With these methods we were presented moving motions using a model of a human body.

Motion and Structure Estimation Using Fusion of Inertial and Vision Data for Helmet Tracker

  • Heo, Se-Jong;Shin, Ok-Shik;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.31-40
    • /
    • 2010
  • For weapon cueing and Head-Mounted Display (HMD), it is essential to continuously estimate the motion of the helmet. The problem of estimating and predicting the position and orientation of the helmet is approached by fusing measurements from inertial sensors and stereo vision system. The sensor fusion approach in this paper is based on nonlinear filtering, especially expended Kalman filter(EKF). To reduce the computation time and improve the performance in vision processing, we separate the structure estimation and motion estimation. The structure estimation tracks the features which are the part of helmet model structure in the scene and the motion estimation filter estimates the position and orientation of the helmet. This algorithm is tested with using synthetic and real data. And the results show that the result of sensor fusion is successful.

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법)

  • Kim, Ho-Joon;Cho, Yun-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

Design of High Performance Dual Channel Pipelined Interpolators for H.264 Decoder (이중 채널 파이프라인 구조의 H.264용 고성능 보간 연산기 설계)

  • Lee, Chan-Ho
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.110-115
    • /
    • 2009
  • The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation. The quarter-pixel interpolation is achieved using 6-tap horizontal or vertical FIR filters for luminance data and bilinear FIR filters for chroma data. We propose the architecture for interpolation of luminance and chroma data in H.264 decoders. It is composed of dual-channel pipelined processing elements and can interpolate integer-, half- and quarter-pixel data. The number of the processing cycles is different depending on the position. The processing elements are composed of adders and shifters to reduce the complexity while the accuracy of the pixel data are maintained. We design interpolators for luminance and chroma data using Verilog-HDL and verify the function and performance by implementing using an FPGA.

  • PDF