• 제목/요약/키워드: Monolithic crown

검색결과 44건 처리시간 0.02초

지르코니아 단일구조 전부도재관의 파절강도 (FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS)

  • 정희찬
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

지르코니아 단일구조 전부도재관과 금속도재관의 파절강도 비교 (FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS AND METAL-CERAMIC CROWNS AFTER CYCLIC LOADING AND THERMOCYCLING)

  • 이상민;정희찬;전영찬
    • 대한치과보철학회지
    • /
    • 제45권1호
    • /
    • pp.12-20
    • /
    • 2007
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness (0.5mm, 0.8mm, 1.1mm) and metal-ceramic crowns (1.0mm, 1.5mm) Material and method: Twelve crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system (Kavo, Germany) and twelve crowns for each of 2 metal-ceramic crown groups were made by the conventional method. All crowns were luted to the metal dies using resin cement. Half of the specimens were exposed to thermocycling ($5-55^{\circ}C$, 1 Hz) and cyclic loading (300,000 cycles, 50N). Subsequently, all crowns were mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test (P<.05) were used for statistical analysis of all groups, and paired t-test (P<.05) was followed for statistical comparison between each groups' fracture load before and after cyclic loading. Results: 1. The fracture strength of the zirconia monolithic crowns and the metal-ceramic crown increased as thickness increased (P<.05). 2. The cyclic loading and thermocycling significantly decreased the fracture strength of the zirconia monolithic crowns (P<.05). 3. The standard deviation of fracture strength of the zirconia monolithic crowns was very low. Conclusion: The fracture strength of the zirconia monolithic crowns for the posterior area tends to be higher with thickness increased and 0.8mm or over in thickness is recommended to have similar or over the fracture strength of metal-ceramic crowns.

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

Fabrication of a CAD/CAM monolithic zirconia crown to fit an existing partial removable dental prosthesis

  • Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Lee, Hyeonjong;Kim, Hyeong-Seob
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.329-332
    • /
    • 2016
  • Fabricating a surveyed prosthesis beneath an existing partial removable dental prosthesis (PRDP) is a challenging and time-consuming procedure. The computer-aided design/computer-assisted manufacturing (CAD/CAM) technology was applied to fabricate a retrofitted, surveyed zirconia prosthesis to an existing PRDP. CAD/CAM technology enabled precise and easy replication of the contour of the planned surveyed crown on the existing abutment tooth. This technology ensured excellent adaptation and fit of newly fabricated crown to the existing PRDP with minimal adjustments. In this case report, a seventy-year-old male patient presented with fractured existing surveyed crown. Because the existing PRDP was serviceable, new crown was fabricated to the existing PRDP.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

Correlation between microhardness and wear resistance of dental alloys against monolithic zirconia

  • Cha, Min-Sang;Lee, Sang-Woon;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권3호
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose. The aim of this study is to compare the hardness according to the conditions of metal alloys. Moreover, the correlation between the cast crown hardness before and after wear testing and the degree of wear for each dental alloy was assessed. Materials and Methods. Cast crowns of three metal alloys (Co-Cr, gold, and Ni-Cr alloys) opposing smooth-surface monolithic zirconia were used. The Vickers microhardness of the ingot (which did not undergo wear testing) and the cast crown before and after wear testing were measured for each alloy. Two-way ANOVA and Scheffé tests were used to compare the measured hardness values. Moreover, the Pearson correlation coefficient was used to evaluate the relationship between the surface hardness and the wear of the cast crown (α=.05). Results. There was no significant difference in the hardness before and after wear testing for the gold alloy (P>.05); however, the hardness of the worn surface of the cast crown increased compared to that of the cast crown before the wear tests of Ni-Cr and Co-Cr alloys (P<.05). Furthermore, there was no correlation between the wear and hardness of the cast crown before and after wear testing for all three metal alloys (P>.05). Conclusion. There was a significant difference in hardness between dental alloys under the same conditions. No correlation existed between the surface hardness of the cast crown before and after wear testing and the wear of the cast crown.

치과용 생체보철물 제작을 위한 TZP 단일구조 전부도재관 블럭의 물성과 저온열화 후 굴곡강도에 관한 연구 (The research about the physical properties and flexural strength changed by Low Temperature Degradation of TZP monolithic all-ceramic crown block to make bio-prosthetic dentistry)

  • 이종화;박천만;송재상;임시덕;김재도;김병식;황인환;이성국
    • 대한치과기공학회지
    • /
    • 제34권2호
    • /
    • pp.83-93
    • /
    • 2012
  • Purpose: The objective of this study is to find out physical properties and the flexural strength changed by the low temperature degradation of the block which is needed to make bio-prosthetic dentistry which is better than feldspar affiliated ceramic made by building up ceramic powder and also to apply this to the clinical use of zirconia monolithic all-ceramic crown. Methods: Flexural strength of each sample was evaluated before and after the Low Temperature Degradation, and physical properties of the Tetra Zirconia Block containing 3mol % was evaluated as well. The average and standard deviation of each experimental group were came out of the evaluation. Statistical package for social science 18.0 was used for statistics. Results: The average density of the monolithic all-ceramic crown was $6.0280{\pm}0.0147g/cm$, the relative density was 99.01 %. When the sample was sintered at $1480^{\circ}C$ the diameter of average particle was $396.62{\pm}33.71nm$. All the samples had no monolithic peak after XRD evaluation but only had tetragonal peak. There were statistically significant differences in the result of flexural strength of the samples evaluated after and before the low temperature degradation, the flexural strength before the low temperature degradation was $1747.40{\ss}{\acute{A}}$, at the temperature of $130^{\circ}C$ the flexural strength after the low temperature degradation was 1063.99MPa (p<0.001). There was statistically significant difference in the result of strength of 1020.07MPa after the low temperature degradation at the temperature of $200^{\circ}C$ (p<0.001). Conclusion: The block which was made for this evaluation possesses such an excellent strength among dental restorative materials that it is thought to have no problems to use for tetragonal zirconia polycrystal.

단일구조 지르코니아 크라운의 소결 후 추가 소성 과정이 변연 및 내면 적합도에 미치는 영향 (Effect of additional firing process after sintering of monolithic zirconia crown on marginal and internal fitness)

  • 신미선;이현종
    • 대한치과보철학회지
    • /
    • 제57권4호
    • /
    • pp.321-327
    • /
    • 2019
  • 목적: 본 연구는 단일구조 지르코니아 크라운의 소결 후 소성 과정이 변연 및 내면 적합도에 미치는 영향에 대하여 3차원으로 평가해 보고자 하였다. 재료 및 방법: 타이타늄 지대치 모형을 제작하여 10개의 단일구조 지르코니아 크라운을 제작하였다. 제작된 단일구조 지르코니아 크라운을 소결 한 상태를 대조군으로, 소결 후 광택을 위해 추가적인 소성단계를 거친 후를 실험군으로 설정하였다. 각 군에서 triple-scan protocol을 이용하여 협설과 근원심으로 단면을 형성하고 변연 및 내면 적합도를 계측하여 통계 분석하였으며, 삼차원 표면 비교를 시행하였다 (${\alpha}=.05$). 결과: 변연과 내면 적합도를 분석한 결과 근심 축벽에서 대조군($32.0{\pm}24.3{\mu}m$)과 실험군 간($17.0{\pm}10.8{\mu}m$)의 통계적 유의한 차이가 있었고 (P < .020), 원심 축벽에서 대조군($60.2{\pm}24.3{\mu}m$)과 실험군($71.8{\pm}21.5{\mu}m$)간의 통계적으로 유의한 차이가 있었다 (P < .01). 나머지 측점지점에서는 통계적으로 유의한 차이가 없었다. 결론: 단일구조 지르코니아 크라운에서의 소결 후 추가적인 소성은 내면의 변형에 큰 영향을 미치지 않았고 임상적으로 허용 가능한 범위에 있었다.

Monolithic Zirconia Crown을 이용한 심미적 접근 (Achieving Esthetics in Anterior Region using Monolithic Zirconia Restoration)

  • 김종화
    • 대한심미치과학회지
    • /
    • 제25권1호
    • /
    • pp.4-14
    • /
    • 2016
  • CAD/CAM이 치과계에 도입된지도 벌써 꽤 많은 시간이 흘렀음에도 불구하고 현재의 CAD/CAM은 여전히 비효율적이거나 또는 비심미적이다. '효율성' 과 '심미성'이란 두 단어는 지르코이나 보철물에 있어서는 양극에 위치하게 된다. 효율적이기 위해 도재소성없이 monolithic한 지르코니아 보철물을 만들다 보면 비심미적인 경우가 대부분이고, 거꾸로 심미적이기 위해 도재소성 과정을 거치다보면 여전히 사람의 손을 타게되는 비효율성을 피할 수 없기 때문이다. 이 글에서는 지르코니아 보철물의 현주소와 이와 관련된 몇가지 증례들을 보여드리고자 한다.

디지털 장비의 중첩기능을 이용하여 단일체 수복물의 교합조정을 최소화한 증례 (Superimposition: a simple method to minimize occlusal adjustment of monolithic restoration)

  • 최창훈;김선재
    • 대한치과보철학회지
    • /
    • 제54권3호
    • /
    • pp.253-258
    • /
    • 2016
  • 최근 CAD-CAM과 지르코니아를 이용한 보철물의 제작이 증가하고 있으며 구강스캐너의 발달로 임상 및 기공과정이 단순화되고 있다. 균열치 혹은 치아의 일부가 파절된 경우, 구강스캐너를 사용하여 치아 삭제 전에 치아의 형태를 미리 스캔하고, 추후 수복물 제작 시 중첩을 통해 단일체 지르코니아 전장관을 제작하면 원래 환자의 자연치 형태와 교합을 재현할 수 있다. 본 증례에서는 균열 및 파절된 치아에서 구강 스캐너, CAD-CAM 및 단일체 지르코니아 전장관을 사용하여 삭제 전 치아의 형태와 교합을 재현한 수복물을 제작하였으며, 교합조정을 최소화할 수 있었다. 또한 임상적으로 기능적이고 심미적인 결과를 얻을 수 있었다.