• Title/Summary/Keyword: Mond-Weir type dual problem

Search Result 14, Processing Time 0.026 seconds

MULTIOBJECTIVE CONTINUOUS PROGRAMMING CONTAINING SUPPORT FUNCTIONS

  • Husain, I.;Ahmed, A.;Rumana, G. Mattoo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.603-619
    • /
    • 2009
  • Wolfe and Mond-Weir type dual to a nondifferentiable continuous programming containing support functions are formulated and duality is investigated for these two dual models under invexity and generalized invexity. A close relationship of our duality results with those of nondifferentiable nonlinear programming problem is also pointed out.

  • PDF

OPTIMALITY CONDITIONS AND DUALITY FOR SEMI-INFINITE PROGRAMMING INVOLVING SEMILOCALLY TYPE I-PREINVEX AND RELATED FUNCTIONS

  • Jaiswal, Monika;Mishra, Shashi Kant;Al Shamary, Bader
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.411-423
    • /
    • 2012
  • A nondifferentiable nonlinear semi-infinite programming problem is considered, where the functions involved are ${\eta}$-semidifferentiable type I-preinvex and related functions. Necessary and sufficient optimality conditions are obtained for a nondifferentiable nonlinear semi-in nite programming problem. Also, a Mond-Weir type dual and a general Mond-Weir type dual are formulated for the nondifferentiable semi-infinite programming problem and usual duality results are proved using the concepts of generalized semilocally type I-preinvex and related functions.

OPTIMALITY CONDITIONS AND DUALITY IN FRACTIONAL ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee;Kim, Gwi Soo
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.345-349
    • /
    • 2015
  • In this paper, we consider a fractional robust optimization problem (FP) and give necessary optimality theorems for (FP). Establishing a nonfractional optimization problem (NFP) equivalent to (FP), we formulate a Mond-Weir type dual problem for (FP) and prove duality theorems for (FP).

MULTIOBJECTIVE VARIATIONAL PROGRAMMING UNDER GENERALIZED VECTOR VARIATIONAL TYPE I INVEXITY

  • Kim, Moon-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.179-196
    • /
    • 2004
  • Mond-Weir type duals for multiobjective variational problems are formulated. Under generalized vector variational type I invexity assumptions on the functions involved, sufficient optimality conditions, weak and strong duality theorems are proved efficient and properly efficient solutions of the primal and dual problems.

ON SUFFICIENCY AND DUALITY IN MULTIOBJECTIVE SUBSET PROGRAMMING PROBLEMS INVOLVING GENERALIZED $d$-TYPE I UNIVEX FUNCTIONS

  • Jayswal, Anurag;Stancu-Minasian, I.M.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.111-125
    • /
    • 2012
  • In this paper, we introduce new classes of generalized convex n-set functions called $d$-weak strictly pseudo-quasi type-I univex, $d$-strong pseudo-quasi type-I univex and $d$-weak strictly pseudo type-I univex functions and focus our study on multiobjective subset programming problem. Sufficient optimality conditions are obtained under the assumptions of aforesaid functions. Duality results are also established for Mond-Weir and general Mond-Weir type dual problems in which the involved functions satisfy appropriate generalized $d$-type-I univexity conditions.

MIXED TYPE DUALITY FOR CONTROL PROBLEMS WITH GENERALIZED INVEXITY

  • Husain, I.;Ahmed, A.;Ahmad, B.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.819-837
    • /
    • 2008
  • A mixed type dual to the control problem in order to unify Wolfe and Mond-Weir type dual control problem is presented in various duality results are validated and the generalized invexity assumptions. It is pointed out that our results can be extended to the control problems with free boundary conditions. The duality results for nonlinear programming problems already existing in the literature are deduced as special cases of our results.

  • PDF

ON SUFFICIENCY AND DUALITY FOR ROBUST OPTIMIZATION PROBLEMS INVOLVING (V, ρ)-INVEX FUNCTIONS

  • Kim, Moon Hee;Kim, Gwi Soo
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.265-269
    • /
    • 2017
  • In this paper, we formulate a sufficient optimality theorem for the robust optimization problem (UP) under (V, ${\rho}$)-invexity assumption. Moreover, we formulate a Mond-Weir type dual problem for the robust optimization problem (UP) and show that the weak and strong duality hold between the primal problems and the dual problems.

DUALITY FOR MULTIOBJECTIVE FRACTIONAL CONTROL PROBLEMS WITH GENERALIZED INVEXITY

  • Nahak, C.;Nanda, S.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.475-488
    • /
    • 1998
  • Wolfe and Mond-Weir type duals for multiobjective con-trol problems are formulated. Under pseudo-invexity/quasi-invexity assumptions of the functions involved, weak and strong duality the-orems are proved to relate efficient solutions of the primal and dual problems.