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ABSTRACT. Wolfe and Mond-Weir type dual to a nondifferentiable contin-
uous programming containing support functions are formulated and duality
is investigated for these two dual models under invexity and generalized
invexity. A close relationship of our duality results with those of nondiffer-
entiable nonlinear programming problem is also pointed out.
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1. Introduction

Chandra, Craven and Husain [3] obtained necessary optimality conditions
for a constrained continuous programming having term with a square root of
a quadratic form in the objective function, and using these optimality conditions
formulated Wolfe type dual and established weak, strong and Huard [11] type
converse duality theorems under convexity of functions. Subsequently, for the
problems of [3], Bector, Chandra and Husain [2] constructed a Mond-Weir type
dual which allows weakening of convexity hypotheses of [3] and derived various
duality results under generalized convexity of functionals.

Recently, Husain and Jabeen [7] derived optimality conditions for a nondiffer-
entiable continuous programming problem in which nondifferentiable enters due
to appearance of support functions in the integrand of the objective functional
as well as in each constraint function. As an application of these optimality con-
ditions, the authors in (7] formulated both Wolfe and Mond-Weir type duals to
the nondifferentiable continuous programming problem and established various
duality results under invexity and generalized invexity.
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There exist an extensive literature relating to optimality and duality in mul-
tiobjective nonlinear programming. But the status of continuous programming
for optimality and duality is not very accomplished. Duality and optimality for
multiobjective variational problems which can be referred to as continuous pro-
gramming problems have been studied by a number of authors notably Bector
and Husain [1], Chen [5] and many others cited in these references.

Generally any real world problems can be identified as multiple conflicting cri-
teria, e.g., the problems of oil refinery scheduling, production planning, portfolio
selection and many others can be modeled as multiobjective programming prob-
lems. Motivated with this observation in this exposition we study duality for a
class of nondifferentiable continuous programming problems containing support
functions. The close relationship of our duality results with those of nonlinear
programming is also witnessed.

2. Invexity and generalized invexity

Invexity was introduced for functions in variational problems by Mond, Chan-
dra and Husain {10] while Mond and Smart [8] defined invexity for functionals
instead of functions. Here we introduce extended forms of definitions of invexity
and various generalized invexity for functional in variational problems involving
higher order derivatives.

Let I = [a,b] be areal interval; ¢ : IxR"xR" — Rand g: IxR"xXR"* — R™
be continuously differentiable function. In order to consider ¢(t, z(t), &(t)) where
z=(z' 2% ...,2™)7, the gradient vector of ¢ is differentiable with derivative ,
denote the partial derivatives of ¢ to z and % respectively denoted by

T T
¢x:[8¢~ .. %] and ¢¢=[8¢ .. a—QS]

Az’ G gl " gim
Let X designates the space of piecewise functions z : I — R™ possessing
derivatives z and & with the norm ||z|| = ||z||sc+]| D%l o, Wwhere the differentiation

operator D is given by
¢
u=Dz=z()=0o +/ u(s)ds,
a

where « is given boundary value; thus D = % except at discontinuities.

In the results to follow, we use C(I, R™) to denote the space of continuous
functions ¢ : I — R* with the uniform norm ||¢|| = sup |¢lser; Let C+(I, R™)
denote the cone of non-negative function in C'(I, B™). The partial derivatives of
g are defined using m x n matrices; superscript T denotes matrix transpose.

The following definitions are required for further analysis.

Definition 1 (Invexity). If there exists vector function n(t, v, 4, z, &) € R™ with
n = 0 and z(t) = u(t),t € I such that for a scalar function ¢(¢t,z, &), the func-
tional ®(x, &) = [} ¢(¢, z, &)dt satisfies

O, 1) — Oz, 5) 2 /I (nba(t, 2, 3) + (D)7 ba(t, v, &)},
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® is said to be invex in = and ¢ on I with respect to 7.
Definition 2 (Pseudoinvexity). ® is said to be pseudoinvex in z and Z with
respect to n if
/{ansgc(t, z,8) + (D) ¢5(t, 2, &) }dt 2 0
implies <I>I(x, ) 2 O(z, ).

Definition 3 (Quasi-invex). The functional ® is said to quasi-invex in  and
with respect to 7 if

O(z,u) £ Pz, 1)
implies

/I (" a(t, ,5) + (D) a(t, z, &) }dt < 0.

Definition 4 (Support function). Let K be a compact set in R™, then the
support function of K is defined by

s(z(t)|K) = max{z(t)Tv(t) 1 v(t) € K,t € I}
A support function, being convex everywhere finite, has a subdifferential in the
sense of convex analysis. From [8] subdifferential of s(z(t)|K) is given by
ds(z(t)|K) = {z(t) € K,t € I such that |z(t)T2(t) = s(z(t)|K)}.
Definition 5 (Efficient Solution). A feasible solution Z is efficient for (VPE) if
there exist no other feasible x for (VPE) such that for some ¢ € P = {1,2,...,p},

/1 (f*(z) + S(z|C))dt < /1 (fi(z) + S(z|C"))dt for all i€ P.
and

/(fj(a:)+S(a:|Cj))dt < /(fj(ir) + S(z|C%))dt for all j € P,j #i.
I I

3. Variational problem and optimality conditions

Before stating our variational problem and deriving its necessary optimal-
ity condition, we mention the following conventions for vectors z and y in n-
dimensional Euclidian space R™ to be used throughout the analysis of this re-
search.

T <y, = z; < Yi, 1=1,2,...,n.
37§y, & migyiv 1=1,2,...,n.
z <y, & z; <, 1=1,2,...,n, but z#y

x £ y, is the negation of z <y

For z,y € R, x < y and = < y have the usual meaning.
We present the following nondifferentiable continuous programming problem
containing support function.

(CP)  Minimize ( /1 (FU(t o, &) + S(2|CY))dt, ..., / (F7(t, . ) + S(:v|Cp))dt>

1
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Subject to
z(a) =«a, xz(b)=7p
@z, &)+ Sx|D) L0, j=1,2,...,m, tel
where f* : I x R®* x R® — R,(i = 1,2,...,p),g : I x R™ x R" — R™,j =
1,2,.. ., are continuously differentiable function, and for each C*,¢ = 1,...,p
and D7,j = 1,...,m are compact convex set in R".

In order to validate the strong duality theorem, we will require the following
lemma of Chankong and Haimes {4].

Lemma 1. A point % is an efficient for (CP) if and only if & is an optimal
solution for all

(Pi(7)) Minimize ( /I (f*t,z, &) + S(x{C’“))dt)
Subject to
z(@)=a, z(b)=p
| /I (Filt, 2, &) + S(|C))dt £ /1 (F(t. 3, 7) + S(F|C))dt, for alli # k
@, z, )+ Sx|D) L0, j=1,2,....,m, tel
4. WOLFE duality

The following problem is formulatd as Wolfe type dual for the problem (CP).
(WCD) Maximize

( . /1 (1w, @) 2 @)+ v ()T (9 (w0 +u(t) o (t))) di

=1

oo [ (P + 70 + LA O (¢ ) 40T 0) )

J==1
Subject to
u{a) = a,u(b) = 3 (4.1)
» m
Y ON(fL () + YY)+ (1) = DO fi +y(t)ge) t € I (42)
i=1 J=1
2ty ect, i=1,2,...,p (4.3)
w(t)eD’, j=1,2,...,m (4.4)
»
A>0,) X =1 (4.5)
i=1

Theorem 1 (Weak Duality). Let & be feasible for (CP) and (u,y,2%,...,27,w!,
<oy w™ ) be feasible for (WCD). If for all feasible (x,u,y, 2%, ..., 2P, wt, ...,
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w™, A) and with respect to n = n(t,z,u),

P m
(NG O @i+ o 0 )+ T 0) )
i=1 j=1
1s pseudoinvex then the following cannot hold.

/(fi(t,:c,:'c)+S(x(t)|0i))dt < /(fi(t,u,u)+u(t)Tzi(t)dt
I I

3 PO (00 + () ()
forallie{l,...,p}, and ’
/1 (f(t2,) + S@B)|CT)dt < /1 7 (6w, ) + u()T 2" (£)dt

m
+ 3 7 ()7 (g7 (,w, @) + u()Tw (¢)) ) dt
j=1
for somer € {1,2,...,p}.
Proof. Suppose that the conclusion of the theorem hold. With the feasibility
of the problems (CP) and (WCD), together with T (t)2(t) < S(z(t)|C?),i =
1,2,...,p, we have

J (#0400 + 30 07 6, + 0w 1) )

< /1 (fi (tu, ) +u®)T2 () + Yo ()T (¢ (tu, @) + u(t)ij(t))) dt

j=1
foralli e {1,...,p}

m

J a8+ 20 + Yy 007 0, 8) + 20w 0

m
< /(fr(t, w, @) +u()T2" () + > v () (¢ (6w, @) + u(t) v (1)))dt
I ,
j=1
for some r € {1,2,...,p}.
rp. .
Now in view of A > 0 and ) A" = 1, these inequalities yield

=1

2N /z (fi(t, z, &) +z(t) 2 () + Dy () (¢ (8w, &) + 2() v (t))>dt

=1

<y N / (fi(t, w, @) +u®) 2 () + S (07 (G (8w, i)+ u(t) 0 (t))> it
i=1 ! =
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This in view of the pseudoinvexity of

Lo H )+ O 0+ 3P O+ P00 )t

gives,

m

> [{n Zx(fwz )+ v+ o)

HONTOT S+ y(0)700)
=[x 0+ Lo wo)

~D(\Tfs + y(t)ngb)}dt O+ y(0) g2)

(by integration by parts)

t=b

t=a

Using the boundary conditions which at t = a, t = b give n = 0, we have
p . . . m . . .
Jr{xu 20+ v+ w o)
i=1 j=1

~D(\T f: + y(t)ng;;)}dt <0 (4.6)

From the equality constraint of the (WCD), we have
P
/I nT{ YoM+ + ny (¢ +w (1)) — DOT fz + y(t)Tgi)}dt =
i=1

This relation (6) contradicts the equality constraint. Hence the conclusion of the
theorem is true.

Theorem 2 (Strong Duality). Let T be a feasible solution of (CP) and for at
least one i, i € {1,2,...,p}, T satisfies the regulamty condition [3] for (Pi(x)).

Then there exist A € RP with AT = (\!,. L AP), 2i(t) € C’, i=12...,p,
wit)e DI, j=1,2,....,m pzecewzse smooth 0:1— R™ with o7 (vl, LT
.., 0™), such that (m w,y,2', ..., 2P, wh,...,w™ }) is feasible for (WCD) and

the objective values of (CP) and (WCD) are equal, and
> / 7 ()7 (¢, 7, 2) + 3(t)Tw(t))dt = 0.
g=1"1

Further, if the hypothesis of Theorem 1 is met, then (z,u,y,2%,...,2°,w',...,
w™, A) is an efficient solution of (WCD).
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Proof. Since Z is an efficient solution of (CP), by Lemma 1, Z is an optimal
solution of (Px(z)). Consequently, by Theoreml1 [7] there exists 7 € RP with 77 =
(rh, . . 1t TP), ) € CF i = 1,2,...,pand w(t) € D, j =1,2,....m
and piecewise smooth ¢ : I — R™ With UT (0',...,7%,...,0™) such that the
following optimality conditions [3] hold:

TH(f7 +25(t) = DfE) + YV ()9 + @ (1)) — Du(t)" gz

j=1

+Y T+ 2 () - Dfy) = (4.7)

ik
S Pt 7, 7) + 3(t) T I (t))dt = 0 (4.8)
()12 () = S(z(t)|CY), i=1,2,...,p,tel (4.9)
z()Twi(t) = S@E@)|DY), j=1,2,....mtel (4.10)
At)yect, i=1,2,...,p (4.11)
w(t)ye DV, j=1,2,....,m (4.12)
T>0,v(t)20,tel (4.13)
Dividing (7}, (8) and (13) by f: 74 # 0, and setting \* = i and yi(t) =
=1 ;Ti
z;(t) , we have
&
Z (e +20) + > )9 + 2By’ (1)) = DO fa + (1) 95) (4.14)
j=1 j=1
i 7 () (g ¢tz 2) +2()Twi(t) =0,t e T (4.15)
j=1
/\>0,y(t)§0,tel,2p:)\i: (4.16)
i=1

Consequently from (11), (12), (14), (15) and (16), the feasibility of (z,u, 7, 2%,
P, wl, ..., w™, \) for (WCD) follows.
In view of (9), (10) and (15), we have for each i =1,...,p.

m

[t o9+ 2070+ Y 7 00 2,8) + 50T ) = 0

Jj=1
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_ /fi(t,i,:%)+S(:E(t)|Ci)dt, i=12,....p
I

This in view of Theorem 1, yields the efficiency of (z,u, y, 2,..., 2P, wl, ..., w™, ))
for (WCD)

For the converse duality, we make the assumption that X denote the space
of the piecewise differentiable function z : I — R" for which z(a) = 0 = z(b)
equipped with the norm ||z||oc + || DZ |00 + || D% || co-

(WCD) may be rewritten in the following form.

Minmize(| [ (7t + )20 + 30 O 06, ) + (0w (),

j=1

...,/I—(f”(t, u,4) +u(t)T2P(t) + Zyj(t)T(gj(t, u, %) + u(t)ij(t)))dt>

Subject to
u(a) = a,u(b) = B; O(t,z,&,y,\) = 0;

P
At €Ci=12,..,p; w(t)eD j=1,2...,m; A>0Y XN=1
=1

where
0 = 6(t,x(t), &(t), y(t), )

p m
= DN+ 20+ I (B)gl +w(t) - DOTfL +y(t)gs) t € 1
i=1 i=1

with & = D?z(t) and § = Dy(t)
Consider 0(t, z(-), (-}, Z(-), y(*), ¥(-), \) = 0 as defining a mapping 9 : I x X x
Y x RP — B where Y is a space of piecewise differentiable function and B is the
Banach Space. In order to apply results of Craven [6] to the problem (WCD),
the infinite dimensional inequality must be restricted. In the following theorem,
we use 9’ to represent the Frécheét derivative [10, (2, y, A), Yy(z,y, N), ¥a(z, y, A)].

Theorem 3 (Converse Duality). Let (z,4,7, 2, ..., 2P, @', ..., @™, \) be an ef-
ficient solution for (WCD). Assume that

(H1) The Fréchét derivative 4 has a (weak*) closed range,

(Hz2) f and g are twice continuously differentiable and

(Hs) (B(t)T0: — DA(t)T 0z + D*B(t)705)5(t) = 0,= B(t) = 0,t € I

Further, if the assumptions of Theorem 1 are satisfied, then T is an efficient
solution of (CP).

Proof. Since (z,%,y,2",...,2°,w,..., @™, X) with ¢/ having a (weak*) closed
range ,is an efficient solution of (WD), then there exist o € RP with a7 =
(al,...,a%...,aP) , piecewise smooth 8 : I — R™ and p : I — R™ with



Multiobjective continuous programming containing support functions 611

p@®)T = (ui(t),...,u™(t)) ,n € RP and & € R such that the following Fritz-John
conditions [6] holds,

—Za (f + 2 (¢ +Zy (2 +w (t)) = D(o” fz +y(t)" g2))

(ﬂbx ﬁ()e +D%ﬂﬂﬁz_0¢el (4.17)
(aT Wg' +2)" @ (1) + B(t) 0,5 — DB() 0y — 7 (1) = 0,6 € 1 (4.18)
i=L2....m
(fL+20) —DfHBE) - +Kx=0i=1,...,p (4.19)
(BN — &'Z(t)) € Nei (21 (1)), i =1,...,p,t € I (4.20)
(B(t) — (@Te)z(t))iF (t) € Npi (@ (b)), j=1,...,m,t €T (4.21)
nA=0 (4.22)
(D X —1)=0 (4.23)
i=1
p®)Tgt)y=0,tel (4.24)
(a,m, 6, p(t)) 20 (4.25)
(c, B(t), m, 5, (1)) # 0O (4.26)
Since A > 0, (22) implies n = 0. Consequently (19) implies
(f2 +2'(t) = DIE)B() = =k (4.27)
From the equality constraint of (WCD), we have
(Z Y (6)(g% + w7 (t) — Dy()Tg Z N(fi+2(t) + Df2)B(1)
:—E:Me@zn (4.28)

From (17) have

—Za (Fict (04 DA B(E) (0 e<zy Nt +@(0) - Da(o)” +95) ) 8

+(B(t)T 8, — DB(1)76; + D?B(t)" 0:)6(t) =0, tel
Using (27) and (28) in this relation, we have
(B(t)"6. — DB()" 6; + D*B(t)T 6z = 0)8(t), tel
This because of the hypothesis (Hs), gives
Bty =0,te (4.29)
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Suppose a = 0, then from (18) we have p/(t) =0,j =1,2,...,m, and from (19)
we get s = 0. Consequently («, 3(t), 7, &, u(t)) = 0. This contradicts (26).
Hence a > 0.

From (20) and (21) in view of (29) implies,

()77 () = SE®)|CY), i=12,...,ptel (4.30)
()T (t) = SEW|DY), j=1,2,....,mtel (4.31)
From (18) along with (25), (29) and (31), we have
gtz &)+ S(E{)D)£0,5=1,2,... mtel
This implies Z is feasible for {(CP).
The relation (18) along with (29) and (24) gives
D F W (b w,8) + () W () =0t €T (4.32)
j=1
Now for each i € {1,...,p}, in view of (30) and (32), we have
/ (f(t,2,2) + 272 (t) + D_ v (1) (¢ (t, 7, %) + 2() v’ (1)))dt = 0

1 =

= /(fé(t, z,%)+ S(z|C))dt, i =1,2,...,p
1
This along with the requirements of Theorem 1 yields the efficiency of Z for (CP).

5. MOND-WEIR type duality

We further weaken the invexity requirements by formulating Mond-Weir type
dual to the problem (CP).

(M-WCD) Maximize(/](fl(t,u,d) +u®)T2H(t))dt, . . .,

/I(f” (t,u,w) + u(t)sz(t))dt)

Subject to
u{a) = o, u{b) = (5.33)
i m
D ON(FL ) + D1 () (g + wi (1))
=1 j=1
=D fi+yt)Tgs) t el (5.34)
2t)eCi=1,2,...,p, (5.35)
wi(t)e DV j=1,2,...,m, (5.36)

y(t) 20,tel (5.37)



Multiobjective continuous programming containing support functions 613

Z / 3t ) + u(t)Twd (8)de 2 0,¢ € T (5.38)
2> 0 (5.39)

Theorem 4 (Weak Duality). Let Z be feasible for (CP) and
(u,y, 2%, ..., 22wt ..., w™, ) be feasible for (M-WCD). If for all feasible (x,u
y, 2t .., 2wt L w™, \) with respect to n = n(t, T, u),
P .
(1) NS, ., ) + ()T 2Ht))dt is pseudoinver and
(i) > [ O, ., )+ ()Twi(t)dt is quasi-invex with respect to same n =
j=1
n(t, z,u) following cannot hold.

/(fi(t,ac,:it) + S(z(t)|CH))dt < /(fi(t, u, w) +u(t) 24 (t)dt  (5.40)

I I
forallie{1,...,p}, and

/ (F (L, &) + S(2(8)|CT))dt < /1 (F (o, @) + w()T2" ()t (5.41)

I
for somer € {1,2,...,p}.

Proof. Suppose that (40) and (41) hold, then in view of A > 0 and z(¢)T2%(t) <
S(z(t)|CY),i=1,2,...,p we have

Z)\’/fltx:cﬂ—x dt<Z)ﬁ/}”tuu)+u( £ 28 (t))dt

p. . .
This in view of the pseudoinvexity of >° N (fi(t,.,.) + ()T 2*(¢))dt yields,
i=1

P
ST Qo N G+ 20 + (D) (T )}t < 0
i=1
This on integration by parts gives
= [ AT OD N 0 — DT fo)it + O )2,
i=1
Using the boundary conditions which at ¢t = a,t = b gives n = 0, we have

/I”T(i N(fs +2'(0) = DOT f3)dt < 0
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From the feasibility requirements of (CP) and (M-WCD) together with z(t)T2%(¢) <
S(z(t)|C"), we have

> /; Y (g (t,2,8) + 2(t) 0 (1))t
< Y [P Or i - ut v o)
By quasi-invexity of i ¥ O, .,.) + (-)Tw?(t))dt, implies

/ [nTjéy“’ (16} +u9(8) + (Dn)T5 (@)elld <0 (5.42)
This, by integration by parts, as earlier gives

/ nT{ijly" (0(6k +u9 (1)) - DY (D)t £ 0 (5.43
Combining (42) and (43), we have

P m
/, TN+ 20 + Y P (0@ + 0 (1)) ~DONT fi + y() ga) bt < 0
g==1

=1
which contradicts (34), this establishes the conclusion of the theorem.

The following strong duality can be proved on the lines of Theorem 2 with
slight modification.

Theorem 5 (Strong Duality). Let  be a efficient solution of (CP) and for at
least one i ,i € {1,2,...,p},T satisfies the regularity condition [3] for (Pi{Z)).
Then there exist A € RP with XT = (X',...,)%,..., ) P) and piecewise smooth
g: I — R™ with g© = (g*,...,9%,...,9™), 2(t) € C*, i = 1,2,...,p and
w/(t) € DI, j=1,2,...,m such that (Z,4,7,2%,..., 27, %", ..., 0™, \) is feasible
for (M-WCD) and the objective values of (CP) and (M-WCD) are equal.

Further, if the hypothesis of Theorem 4 is met, then (Z,%,7,2,...,2°,@",. ..,
@™, A) is an efficient solution of (M-WCD).
(M-WCD) can be rewritten in the following form:

Minimize — </(fl(t,u,7'1,) +u(t) T2 (t))dt, . ..,
I

/I(fp(t, u, ) + u(t)sz(t))dt)
Subject to
u(a) =a , u(b) =B 0(t, 2(t), &(t), y(t), \) = 0;
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At eChi=1,2,...,p; wi(t)e D, j=1,2,...,m;
y(t) 2 0,t € I;
Z ¥ ()T (¢ (t, u, w) + u@®)Twi (t))dt 2 0,t € I; A>0
g=1"1
where
0 =0(t,z(t), &(t),y(t), A)
=Y XN (i +2 @) + )y (8)(gh +w (1) - DO fi +y(D)ga) t €
i=1 7j=1
Theorem 6 (Converse Duality). Let (Z,,7,2",...,2°,w,..., @™, \) be an ef-

ficient solution for (M-WCD). Assume that

(A1) The Frécheét derivative ' has a (weak®) closed range,

(A2) f and g are twice continuously differentiable,

(A3) fi+zH(t)— Dfi,i€{1,2,...,p} are linearly independent and

(A1) (Bt)T0, — DB()YT 0 + D?B(t)70:)8(t) =0,= B(t) =0,t € I

Further, if the hypotheses of Theorem 4 are met then T is an efficient solution of
(CP)

Proof. Since (z,1,79,2%,...,2°,w',..., @™, \) with ¢/ having a (weaks) closed
range, is an efficient solution of (MWD), then there exist o« € RP with al =
! g aP), piecewise smooth 3: 1 — R™ and p: I — R™,n € RP with

(a', ..., 0ot . ..
nt = (n',...,nP) satisfying the following Fritz-John conditions [6],

_Zai(fiJrzi( —-Df)— Zy (g2 +w (1)) — Dy(t)" g92)

+8t) 10, — DB()T0; + 1)25(15)%jé =0,tel (5.44)
—(g? + Z()w (t)) + B(t)T 0, — DB{)T 0, — 17 (1) =0,t € I,
i=1,2...,m (5.45)
(fo +2°(t) = DFYBE) —n* =0,i=1,...,p (5.46)
(BN — &*Z(t)) € Nei (22 (1)), i =1,...,p,te I (5.47)
(B(t) — vz (t) € Npsi (w? (), 5 =1,...,mt €T (5.48)
vy /I () (g +2t)T w7 (t)dt =0 (5.49)
n"A =0 (5.50)
pryt)y =0,tel (5.51)
(o, p(t),m, ) 2 0 (5.52)
(a, B(t), u(t),my # 0 (5.53)
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Since A > 0, (50) implies = 0. Consequently (46) implies
(fi 4+ 25(t) = DFOBE) =0,i=1,...,p (5.54)
Using the equality constraint of (M-WCD) in (44), we have
P
=D (@ = X)(fi + 2(t) = DF) +B(t)T0c — DB(E)T0s
i=1
+D?Bt)T0: =0,t el (5.55)
Using (54) and (55) in {44), we have
(B()T 6z ~ DB()T 0: + D?6(t)70:)5(t) = 0,6 € 1
which because of the hypothesis (A4) implies
Bty =0,tel (5.56)
The relation (55) along with (56), gives zp: (@ =) (fi+24(t) -~ Df:L) = 0. This,
due to the hypothesis (A3) gives, =
&t =v\=0,i=1,2,...,p (5.57)
Suppose v = 0; Then from (57) we have a = 0. From (45), we have u(t) = 0,¢ € 1.
Consequently, («, 8(t), u(t),n,7v) = 0 contradicting the Fritz-John condition
(Sglzfence v > 0 and from (57), & > 0. In view of (56) together with v > 0 and

a > 0, {47) and (48), respectively imply

)77 @) = SE®)|CY, i=1,2,...,ptel (5.58)
z®)Tai(t) = S(z()|DY), j=1,2,....mtel (5.59)

The relation (45) along with v > 0 and y(t) 2 0,¢ € I and (59) imply
&t,%,%2)+SEH)IDHYL0, j=1,2,....,m

This implies the feasibility of Z for (CP). In view of (58), we have
F@+z72 = fiz) + S@E|chH, i=1,2,...,p

This in view of the hypothesis of Theorem 4, gives the efficiency of # for (CP).
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6. Related problems

It is possible to extend duality theorems established in the previous sec-
tions to the corresponding multiobjective variational problem containing support
function with natural boundary values rather than fixed end points.

PRIMAL(CP)q:

Minimize( / (FL(t, 2, %) + S(z(®)|CH)dt, . .., /I (fP(t 2, 5) + S(a(0)|CP))dt)

I
Subject to

@,z 2)+ S(xt)|D)L0,7=1,2,...,mtecl
DUAL (WDP),:

NE

Maximize(/l(f1 (t,u, @) +u®)T2H )+ P ()T (¢ (t, u, ) + u(t)Tw (t)))dt

1

INgER]

,...,/(fp(t,u,a) +u(t)T2P(t) +

: ¥ (07 (97 (¢, u,9) + u(t)Tw! (£)))dt)

1

j
Subject to

Z N(fi+2%() + Zyj ) (g + wi(t)) = DT fi + y(t)gs) t € I

Mfo+yt)Tg: =0, at t=a and t=b;
At eChi=1,2,....,p; wt)eD' j=12,....m

P
A>0,ZM =1.
=1

DUAL (M-WD)y:

I

Ma,ximize(/(f1 (t,u, ) +u(t)T 2 (t))dt, . . ., /I(f (t,u, @) + u(t) 2P (t))dt)

Subject to

Z/\’ fo+2'@) + Y9 (gl +wi (1)

Jj=1
=D\ fi+y(t) gs), t e 1
Mfi=0=MTy(t)gs, at t=aand t=>b;
A2 eCi=12,...,p; w(t)eD,j=1,2,...,m;
y(t) 2 0,tel

3
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> /1 W ()T (g (t,u, @) + u(t)Tw! (£))dt 2 0,t € T
j=1
A> 0.

If the functions in the problem mentioned in Section 5 are independent of ¢,
they will reduce to the following.

PRIMAL(NP):

Minimize (f*(z) + S(z|C"), ..., fP(z) + S(z|CP))
Subject to
@)+ Sx|D)£0,j=1,2,...,m.

DUAL (WNP):

Maximize (f!(u) +u” 2! + Zyj(gj(u) +uTw)., ...,
Jj=1

PPu) + 2P+ 4 (g (u) + uTw?))
j=1

Subject to
i m
DS NEA)+Y v +wd) =0;
i=1 j=1

2eCi=1,2,...,p; weD j=12...,m
p

A>0,3 N=1
i=1

DUAL (M-WNP):

Maximize(f!(u) + w2, ..., fP(u) + uT2P)

Subject to
P m
DX+ (g +u)=0
i=1 =1

FeChi=1,2,...,p; weD j=12,....m; y=0tel;

D ov(e () + uTw?) 2 0;
j=1
A>0.
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