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ABSTRACT. A mixed type dual to the control problem in order to unify
Wolfe and Mond-Weir type dual control problem is presented in various
duality results are validated and the generalized invexity assumptions. It
is pointed out that our results can be extended to the control problems with
free boundary conditions. The duality results for nonlinear programming
problems already existing in the literature are deduced as special cases of
our results..
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1. Introduction

Optimal control models are very prominent amongst constrained optimization
models because of their occurrences in a variety of popular contexts, notably,
advertising investment, production and inventory, epidemic, control of a rocket
ete. The planning of a river system, where it is required to make the best use of
the water, can also be modelled as an optimal control problem. Optimal control
models are also potentially applicable to economic planning, and to the world
models of the ‘Limits to Growth’ kind.

Necessary optimality conditions for existence of extremal solution for a vari-
ational problem in the presence of inequality and equality constraints were ob-
tained by Valentine [10]. Using Valentine’s results, Berkovitz [3] obtained corre-
sponding Fritz John type necessary optimality conditions for a control problem.
Mond and Hanson {7] pointed out that if the optimal solution for the problem is
normal, then the Fritz John type optimality conditions reduce to Kuhn- Tucker
conditions. Using these Karush-Kuhn-Tucker optimality conditions, Mond and
Hanson [7] presented Wolfe type dual and established weak, strong and converse
duality theorems under convexity conditions. Abraham and Buie [1] studied
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duality for continuous programming and optimal control from a unified point of
view. Later Mond and Smart [9] proved that for invex functions, the necessary
conditions of Berkovitz [3] together with normality of the constraints, are suffi-
cient for optimality and also derived some duality results under invexity.Recently
Husain et al. [6] presented Mond-Weir type dual to the control problem with a
view to weaken the invexity assumptions in [9] and derived various duality re-
sults and also pointed out that their results have analogues in (static) nonlinear
programming.

In this paper, we propose, in the spirit of Bector, Chandra, Abha [2], a mixed
type dual to nonlinear programming and establish various various duality the-
orems under generalized invexity conditions on the functionals that appear in
the formulations of the control problems. The formulastion of mixed type dual to
the control problem combines Wolfe and Mond-Weir type dual control problems.
Special cases are discussed to show that our results extend some earlier results
in the literature.

2. Control problem and related preliminaries

Let R™ denotes an n-dimensional Euclidean space, I = [a, b] be a real interval
and f: I x R™ x R™ — R be a continuously differentiable with respect to each
of its arguments. For the function f(t,z u), where z : I — R" is differentiable
with its derivative ¢ and u : I — R™ is the smooth function, denote the partial
derivatives of f by fi, fz and f,, where

o0, (o1 afo_af af \"
P T\l ez ) T T \Bul  Bum )
z=(z}...,2"7T and u=(u,...,um)T.

For an m-dimensional vector function g(t, z,u), the gradient with respect to
T is

dg* dg?
Bl Ban
Gz = y
dg* ogP
B B

which is an n x p matrix of first order derivatives. Here u(t) is the control
variable and z(t) is the state variable, u is related to z via the state equation
Z = h{t, z,u). Gradients with respect to u are defined analogously.

A control problem is to transfer the state vector from an initial state z(a) = o
to a final state z{(b) = B so as to minimize a functional, subject to constraints
on the control and state variables. A control problem can be stated formally
as,

Problem (CP) (Primal): Mlmmlze / flt,z,u)d

XuelU
sub ject to
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z(a) = &, z(b) = 4, (1)
hit,z,u)=1z,t €I, (2)
g(t,z,u)<0,t € I. (3)

(i) fisasbefore, g: I x R®" x R™ — RP and h: I x R* x R™ — R" are
continuously differentiable functions with respect to each of its arguments.
(ii) X is the space of continuously differentiable state functions x : I — R" such
that z(a) = o, 2(b) = B, equipped with the norm ||z|| = ||z]|co + | D% |05
and u is the space of piecewise continuous control functions w: 1 — R™
has the uniform norm .||, and
(iii) The differential equation (2) for z with the initial conditions expressed
as z(t) = z(a) + f; h{s,z(s),u(s))ds, t € I, may be written as Dz =
H(z,u), where the map H : X xU — C(I, R™), C(I, R™) being the space of
continuous functions from I — R", defined by H(z,u)(t) = h(t, z(t), u(t)).
Following Craven [4], the control problem can be expressed as,
(ECP):  Minimize F(z,u)
zeX,uel
subject to
Dz = H(z,u),
-G(z,u) € S.
Where G is function from X xU into C(I, RP) given by G(z, u)(t) = g(t, z(t), u(t))
fromz € H,u € U,and t € I; S is the convex cone of functions in C(I, R?) whose
components are non-negative; thus S has interior points.

Necessary optimality conditions for existence of external solution for a vari-
ational problem subject to both equality and inequality constraints was given
by Valentine [10]. Invoking Valentine’s [10] results, Berkovitz [3] obtained cor-
responding necessary optimality conditions for the above control problem (CP).
Here we mention the Fritz John optimality conditions derived by Craven (4] in
the form of the following proposition which will be required in the sequel.

Proposition 1 (Necessary optimality conditions). If (Z,%) € X xU an optimal
solution of (CP) and the Fréchef derivatives Q' = (D — Hy(x,u), —Hy(z,u)) is
surjective, then there exist Lagrange multipliers Ao € R, and piecewise smooth
functions A: I — RP and i : I — R™ satisfying, for allt € I,

ofa(t, Z, 1) + Mt)F 9:(t, 7, 0) + p(t) hy (8,7, 3) + 4(t) = 0,
Xofu(t, 2, @) + N8)Tgu(t, 2, @) + p(t)" hu(t,2,8) =0,
At g(t,z,3) =0,
(Ao, A1) = O,
(R0, A(t), u(t)) # 0.
The above conditions will become Karush-Kuhn-Tucker conditions if Ag>0.

Therefore, if we assume that the optimal solutions (Z, @) is normal, then without
any loss of generality, we can set A\g = 1. Thus from the above we have the
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Karush-Kuhn- Tucker type optimality conditions

Fot, %, 3) + At) T 9o (t, 7, B) + () he(t, 2,0) + 3(t) =0, t €1, (4)
Fult, 2,0) + A(8)T g (t, 2, ) + p(t)Thy(t,2,2) =0, t €1, (5)
At)Tg(t,z,0) =0, t€l, (6)
At) >0, tel (7)

Using these optimality conditions, Mond and Hanson {7} constructed following
Wolfe type dual.

Problem (CDg) (Dual):

b
Maimise [ {5(t,,0) + (O a(t2,0)+ W) (4t 2,10 — ) e
subject to
Folt,z,w) + A1) g2(8, 2, 0) + p(t) ho(t, z,0) + o(t) = 0, tE,
fu(t, z, ’U,) + )\(t)Tgu(t7 j, 1_1') + ﬂ‘(t)Thu(ta z, u) = Oa te I’
At) >0, tel.

In [7], [CP] and (CDg) are shown to be a dual pair if f,g and A are all
convex in  and u. Subsequently, Mond and Smart [9] extended this duality by
introducing the following invexity requirement.

Definition 1 ((Invex) [9]). If there exist vector function 7(t,z,Z) &€ R"™ with
n = 0 at t if z(t) = Z(t), and £(t,u,u) € R™ such that for scalar function

b
o(t, z, &, u), the functional (I)(g;,j;,u):/ (t,r,z,u)dt satisfies

®(z,z,u) — ¢(T, T, 1)
b T
> / [nThz(t,i,z,aH(d—") hi(t, T, %, @) + € hy(t, T, Z, @) | dt

then ¢ is said to be invex in z,4 and u on [ with respect to n and §.

In [9] Mond and Smart proved wesk, strong and converse duality theorems
under the invexity of [ : fdt, [ : M gdt, for A(t) € RP with \(t)>0,t € I and
fab pThdt for any p(t) € R*,t € I. Recently Husain et al (6] for relaxing invexity

requirements in (9] for duality to hold constructed the following dual in the sprit
of Mond and Weir [8]:
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Problem (CD) (Dual):

b
Maximize / [t z,u)dt

subject to
z(a) =0, z(b) = 5, (8)
Folt,z,u) + M) go(t, 2, 1) + p(t) " he(t, z,u) + a(t) = 0,t € I, 9)
Fult, z,u) + M) T gu(t, z,w) + p) hy(t,z,u) =0,t € I, (10)
/ OO glt,2,0) + 0 (bt ,0) — )t > 0, (11)
At) >0, tel (12)

In the subsequent analysis, we require the following definitions of generalized
invexity.

Definition 2 (Pseudoinvex). For a scalar function ®(¢, z, &, u), the functional
o(z, T,u) = ff é(t, z, Z,u)dt is said to be pseudoinvex in x, & and v if there exist
vector function n(t,z,Z) € R™ with n =0 at ¢ if z(t) = Z(¢) and £(t,u, @) € R™
such that

b T
/ (nT%(t,f,i,ﬂH(%) ¢é(t,a‘:,fc,ﬂ)+5T¢u(t,z~,fc,ﬂ))dtz0
= @ll(x,j:,u)zcb(;f,i,a).

Definition 3 (Strictly Pseudoinvex). The functional ® is said to be strictly
pseudoinvex, if there exist vector functions n(t,z,%) € R" with n = 0 at ¢ if
z(t) = Z(t) and £(t,u,u) € R™ such that

b T
/ (anﬁz(t,fc,iﬂ)Jr (%) ¢a‘c(t,57,57,ﬁ)+5T¢u(t,i,:i‘c,ﬂ))dt_>_0
= @a(:c,;i;, u) > (z, z, ).

Definition 4 (Quasi-invex). The functional ® is said to be quasi-invex, if there
exist vector functions (¢, z, &) € R" withn = 0 at ¢ if z(t) = z(t) and £(¢,u, @) €
R™ such that

O(x, 2, u) < &(Z,Z,7)

3. Mixed type duality

We propose the following mixed type dual (Mix CD) to the control problem
(CP) and establish usual duality results:
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(Mix CD) :
Maximize/ [ txu+Zu h’tmu—xj-kz:)\] tmu)}dt
@ i€lo i€Jdo
subject to
z(a) = a,z(b) = (13)
fo(t, z,u) + ()T ha(t, z,u) + A  gu(t, z,u) + 4(t) =0,t € I (14)
Fultsz,u) + u®)Thy(t, 2, 0) + M) gu(t, 2, u) = 0,t € I (15)
/(Zu t)(hi(t, z,u) — %) +Z)\] ta:u))dtzo,
& Nel, j€Ja
a=12...r (16)
A(t)>0,tel (17)

where for N ={1,2,...,n} and K = (1,2,...,k),

(i) IaCM,a=0,1,2,...r and I, N Ig = ¢, 0#0 and U I, =
(i) JoCk,a=0,1,2,...7 with J, N Jg = ¢,a#0 and U Jo = K, and

(iii) 7 = max(r1,re), where r1 is the number of dlSjOlnt subsets of M and
ro is the number of disjoint subsets of K. Then I, or J, is empty for
a>min(ry, 72).

Theorem 1 (Weak duality). Let (z, %) be feasible for (CP) and (z,u, A, p) be
b
feasible for (Miz CD). If for all feasible (Z, 4, z, u, A, p), / (f + Z pi(ht — it

a iely

+ 3 Mg ) dt is pseudoinver and / ( Z (bt — %) + Z N g1>dt is quasi-
J€Jo €], j€Ja
invex with respect to the same n and §, then inf(CP) > sup(MixCD).

Proof. Since (Z, @) be feasible for (CP) and (z, u, u, A) be feasible for (Mix CD),
we have

L(Zu Yty @, u) — ) +Z/\J g(twu))dt

i€l j€Js
/ <Z,u Y(Ri(t, Z, ) — £°) +Z)\J g%txu))dt a=12.
& \el, FEJIa
b . .
By quasi-invexity of / ( Z pi(ht — %) + Z Mg )dt a=1,2,...r this in-
a

€1y j€da

equality yields,
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0> [ ’ G (2; HORs )+ 3 Wogea) - (9) >
+§T<Z ROLACERIES Y Aj(t)gg;(t,x,u))]dt

, el j€da
= /[nT<2<u(t)h(t:cu+,u ) ZA’ gxtmu)
@ i€l Jj€Ja

t=b
+¢7 (}: P (Y (¢, 2, u) + Z N () g (¢, z, u))] dt—ny it

+ET<Z ”i(t)hi(t,w ) Z X (t)g’ (¢, z, u) )]dt
s j€Jda

(using p=0,att =a and t = b)

- [[7( T (vonamirin)+

> MOP )

’iEN\Io jeK\Jo
+§T< PAOLAEENEY A"(t)gj(t,ﬂﬂ»u))]d'f-
1EN\Io JjEK\Jo

Using (5) and (6), this implies

/ ’ (3 (oo o) + ¥ 20 6a0)

i€lo j€Jo
+£T(Zu h’tmu—i—Z)\J tmu)]dtZO
i€lo j€do

b
This, because of pseudo-invexity of / < f+ Z i (t)( i — xz) + Z ,\j(t)gj )dt

@ €1y jedo
yields,

b
/ {f(t,a?,ﬁ) FY W E D )+ Y N (4, a)}dt

i€ly jEJo

/{fta:u J+ 3 H W 0 - )+ Y MO (3, ) (18)

i€ly jedo

Since u(t)T (h(t Z,u)— ') =0, and A\(t)Tg(t, %, @) < 0, these respectively imply

ST pt)(hi(t,Z2,4) —2) =0 and Y. MN(t)¢/(t,%,u) <0,tel.
i€lp jE€Jo
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Consequently (18) gives

b
/ f(t,z,u)dt
> / { fltzu) + ) BBtz u) - ) + ) Aj(t)gj(t,x,u)}dt
a i€ly j€Jdo
That is, inf(CP) > sup(Mix CD). O

Theorem 2 (Strong Duality). If (Z,4) is an optimal solution of (CP) and is
normal, then there ezist piecewise smooth fi : I — R"™ and A: I — RP such that
(Z,1, A\, 1) be feasible and the corresponding values of (CP) and (Miz CD) are
equal.

If, also/ {f—l—Zu — i) +Z)\J }dt is pseudoinvex and/ {f+

i€lp jedo

Z pt(ht — %) + Z Mgl }dt is quasi-inver with respect to the same 1 and &,
i€l B j€Ja
then (Z, 4, A\, ) is an optimal solution of (Miz CD).

Proof. Since (Z, @) is an optimal solution to (CP) and is normal then from Propo-
sition 1, there exist piecewise smooth 7 : I — R™ and A : I — RP such that

Fo(t:2,0) + B he(t,3,8) + 4(t) + AO)T9(t:3,8) = 0,6 € 1, (19)
Fult,2,8) + B(t) T hu(t, 2, 8) + Mt)T g(t, 2,8) = 0, € I, (20)
At)Tg(t,z,a) =0,t € I, (21)
Mt)>0,tel (22)

The relation (21) implies > M(t)g(t,Z,@) = 0 and Y, N (t)¢’(t,%,@) = O,

€Jo j€J o
a=1,2,...,7. Also ﬁ(t)T(Jh(t, z,u)—7) = 0, implies Z] i ()(hit, 3, 3) — 1) =
i€l

0,t € Tand 3 u(t)(hi(t, Z,%)—7%) = 0,t € L Consequently, > fF'(¢)(h'(t,Z,u)

i€l i€l

-z =0,tcTand Y MN(t)g’(t,Z,u) =0,t € I imply

Al

From the relations (19), (20), (22) and (23), it implies that (Z, @, )\, i) is feasible
for (Mix CD) and the corresponding obJectlve values of (CP) and (Mix CD) are

equal in view of 3 F4(t)(hi(t,Z,4) — %) =0 and Y, N(t)g/(t,%,4) =0,t € 1.
i€ly j€do

Y EOR R, - E) + Y, (g (¢ a'éﬂ)]tzo. (23)

1€1y j€J
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b
/ ( f+ }: pi(h Z pY gj>dt is pseudoinvex and / (f+
i€ly Jj€Jo a
Z pi(ht — 24+ Z Mgl )dt, a=1,2,...r is quasi-invex with respect to the
icl, j€da
same 7 and &, then from Theorem 1, (Z,%, A, i) must be an optimal solution of

(Mix CD). a

Theorem 3 (Strict Converse duality). Let
and normality condition be satisfied at (Z

lution of (Miz CD). If (Z — i)+ Z ;\j(t)gj)dt,a =1,2...1 is

’LGI ]EJa

(z,%) be an optimal solution of (CP)
).

Let (&,4, A\, i) be an optimal so-

b

quasi-invex for all feasible (Z,4,M j1), and / ( f+ Z p)(ht - 29+
a i€l

¥ M(t)g )dt is strictly pseudoinvex with respect to the same n and &, then

Jj€Jo
(£,4) = (&, 1), i.e., (&,4) is an optimal solution of (CP).

Proof. We assume that (£,4) # (Z, @) and show that this assumption leads to a
contradiction. Since (Z, %) is an optimal solution of (CP) and is normal, it follows
by strong duality (Theorem 2) that there exist piecewise smooth y: I — R"
and such that (Z, @, A, [i) is an optimal solution of (Mix CD) and

/b ft, z,a)dt
/[f(txu)+2u t)(h'” t, 2, 1) :v) > M(t)gl (.2 } (24)

i€lp j€Jdo

Also since (Z,7) and (&, 4, , 1) are feasible for (CP) and (Mix CD), therefore,
fora=1,2,...,r

/a(Zu V(hE(t, 7, 1) — 1) + Z/\Jt)g )

1€ly j€Ja
/ O B @R, 8) -2+ > M) (t,2,4))dt (25)
& icTa j€Ja
This, because of quasi-invexity of / <Z — ) + Z Mgl )dt,a =
i€, j€Ja

A

1,2,...,r is quasi-invex for all feasible (Z, @, Z, 4, A, t) with respect to 7 and &,
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therefore, (25) implies that fora =1,2,...,r,

/ [ (Z ()AL (t, 2, ) +j; J\i(t)gi(t,ﬁz,a)) _ Z (:_11%>Tﬂi

1€l 1€ly

+§T(Z (h’(t £,4) — & > + > Xf(t)gj(t,j:,a))]dt <0,

€1y j€Ja

175 (osuanso) - 5 wo(unse)

i€l JE€EIu

+§T< h? ( )hi ( t, &, 4) + Z :\j(t)g{;(t,i,ﬂ))]dt_nlz ﬂz(t)
iel, j€Ja i€l,
(integration by parts)

/ab[nT<Z(u(t)h(t:cu+u > Z ta:u)

€1y €Ja

+£T<Z (OB 5,9) + Y M) (4,0 )]dt<0

i€l, j€Ja

t=b

t=a

(n=0att=a,t=>0).

/:[TIT< Z ( HE)RL (L, 2, 0) + 04t ) Z X(t tmu))

i€N\Io jeK\Io
+5T< Z YA (L, 2, 10) + Z N (t ia))]dtgo.
i€N\Iq jeK\Io

Since (2,4, , ji) is feasible for (Mix CD), therefore, by using (14) and (15) in
the above inequality, we have

/ab [nT (fz(t,ﬁz, W)+y (m(t)h;(t, &,1) + fi'( ) +) Mty a @))

i€lgy j€Jdo
+§T(fu (t,2,8) + > pi( £ﬁ+2)\3t)gutxu))] >0.
i€ly j€Jo

This, because of strict pseudo-invexity of f; ( f+ 3 g (hi—z)+ 3 M (t)gd ) dt
icJo j€do
with respect to 1 and &, yields

/a( (t,2,8) + 3 B (h’(tmu >+Z)\Jt)g7(txu)>

i€lg j€do
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Since ) fi* (h"(t,:%, '&)+5:"> =0and Y M(t)g’(t, 2, @), which are consequence
iclo j€Jo
of feasibility of (%, %) for (CP) and (2, 4, A, 1) for (Mix CD), we have
b
f@t,z,u)dt

b
> /( J3,0) + Y (h’t:c, )+2/\3 ﬁ)dt.
e iely j€Jdo
This is a contradiction to (17). Hence (Z,4) = (Z,@), i.e., (,4) must be an
optimal solution of (CP).
We now write

¢1 = ¢1(t7$:ua )\7 ,LL)

= fot /J'(t)T(hm(t’ T, u) + 1) + )‘T(t)gm(t’ T,u),
¢2 = ¢2(t7 T,u, Av“zy’)

= fot N(t)Thu + )‘T(t)gu where f; = fx(t,z,u),
fu = fu(t)xyu)agm = gw(t,x,u) and h, = hz(taxau)

Consider vy (t, z(t), u(t), A(), u(-), i(-)) as defining a mapping Q1 : X x U x Y x
Z — B, where Y is the space of piecewise smooth functions A : I — RF, Z is
the space of differentiable function y : I — R™ and B is a banach space; X
and U are already defined. Also consider ¥q(t, z(-),u(-), A(:), u#{*)) as defining a
mapping Q2 : X xU xY x Z — C where C is another banach space. In order to
apply Proposition 1 to the problem (CD), some assumptions on 14(-) = 0 and
¥a(+-) = 0 are in order. For this it suffices to assume that Frechét derivatives.

Q{l = le(i TL 5\ ) Qlu(w ,E\,ﬂ),Ql)‘(i‘,ﬂ, Xvﬂ)’Qlu(faﬂaj‘ap’)

Qs = | Q(Z, 8, A\, 1), Qou(Z, T, A, i), Q2A(Z, T, A, 5), Q2u(Z, T, A, 1)

have weak *closed range. For notational convenience, we shall write in the sequel

f=ft,z,0), § = g(t%0), h = h(t,5,3), fo = fo(t,5,0), §z = g(t,Z,7),
hy = hy(t, T, 0), ete.

Theorem 4 (Converse duality). Let f,g, and h be twice continuously differ-
entiable and (Z,4, )\, i) be an optimal solution of (Mizx CD). Let the Fréchét
derivatives Q} and Q4 have weak closed range. Assume that

b
(Hy) : / o) (M(t)o(t)dt =0 — o(t) =0, te I

where o(t) € R"t™ and

M) = [fm + ﬂ(t)Thm + )‘( ). Gzzs fum + B(t )Thucv + )‘(t) guz]
fru + ,U(t) hau + )\(t) Gzu, fuu + N(t) hyu + )\(t) Guu

(Ha) : { 3 (ui(t)h;(t,ﬁ,a)+u"(t)>+ > ,\j(t)gg(t,g‘c,a),az1,2,...,r}

icly j€Jda
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and
{ > pt)RL(, Z,E) + )+ Y Af(t)gg(t,f,a),a:1,2,...,r}
1€Ia ]eJa

are linearly independent, there exist corresponding to (14) a piecewise smooth
Lagrange multiplier 3 : I — R™ with 3(t)>0,¢ € I with 8(a) =0 = SB(b).

If, for all feasible (Z, @, z, u, A, u), / (f—i—Zﬂ ( ’)-’rz )\j(t)gj)dt

i€l Jj€Jo

b
is pseudoinvex and / ( Z i (t) (hi —i’) + Z N (t)g? ) dt is quasi-invex with
e Nel, JEJ.
respect to the same 7 and &, then (Z, @) is an optimal solution of (CD).

Proof. Since (Z, @, ), i) is an optimal solution to (CP), therefore, by Proposition
1, there exist 7 € R,v, € R,a=1,2,,...,r, and piecewise smooth 3: I — R
and 6 : I — R™ such that

(5 X (won+i0) + ¥ ¥

i€ly j€Jdo

+/6(t)T <fmx -+ /\(t)nga: + ﬂ(t)Tha:z> + 0(t>T (fuw + /\(t)Tgu:z + :u’(t)Thuw>

+Z%{Z( t)hE + it ) + > X(t)g }=O,teI, (26)

1€ly 1€Jn

T (fu +Y R+ N (t)gi) +0)" (fw + M) gou + u(t)Thm)

i€ly j€Jo

+0(t)T (fuu + M) gy + u(t)Thuu)
+Z%{Zy(t L+ S N(t)g }:O,tel, @27)

i€ly 1€Jq
T(h* — &%) + B(t)ThE — B*(t) + 67 ()AL, = 0,i € I, (28)
Bt)ThE — B () + 0(t)ThE + 7o (R —3%) = 0,5 € I,,a=1,2,...,7,  (29)
79" + B(t)gs + 0(t)ge + 1 (t) = 0,i € I, (30)
BT gL +0t) gl +vag" +0'(t) = 0,i € Ja, = 1,2,...,m, (31)
ya/b(z;ﬁ(t)(hi-ﬂ) + Y N(t)g )dt—o a=1,2,. (32)
@ Niel, j€Ja
n(t)T M) = 0,t € 1, (33)
(1715 5y n(t)) 2 0, € 1, (34)
(, B(£), 0),7r ...y, (t)) £ 0,t € 1. (35)
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Multiplying (28) by p(t),i € Iy and t € I, and summing over ¢ € Iy and then
integrating, we have

f S W)k - 2t + / {07 S (wiom+ i)

% i€l i€l

w007 ( & ui(t}hz)} - 5 0

ie_{o i€l o

t=b
= 0.

t=a

Using A(a) = 0 = (b), we have

/a > pE)(B - &)t

i€ly
/ (BT

Multiplying (29) by p*(t),i € Iy and ¢t € I, and summing over I € I, and then
integrating, we have

/ b {aer (¥ (weons+itw)) +oor (S ;ﬁt)h:;) b

i€l i€l

/Q(Zf”) )dtm0a~12 (37)

i€l,

> (s + i) +o" (S uon har=o. @9

'LEIQ i€lg

Similarly from (30) and (31) together with (33), it implies respectively

/a > N(t)gldt

jE€Ls
/ {ﬁ(t)?‘(;%v@gf)+at>T(Ezjom>g)} (3%)
and
j {ﬁ(t)i’“(g N(oal )+ 000" (ZJ ¥ (0g, )

-{-*ya/a (Z ,\j(t)gj)dtzo, a=12...,rm (39)

J€Ja
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Adding (36) to (38) and (37) to (39), we have

o (Brofres) s g row)e

i€dp j€Jn
/ ( t)T(;;,u (DR + i t)+J;)>\3 t)gﬁ>
+6(%) (E# (t)RL + Y N (2) g]>>dt— (40)
i€y jedy

and

Yo /: ( Z pi(t) (h‘f - a':i) + g_; /\j(t)gj>dt

1€

v [ ’ <ﬂ(t)T(§ (wom+ i) + )y ¥(tet)
+6(t)T ( }: EOR,+ Y /\J‘(t)g§;>) dt=0,0=1,2,...,r. (41)

i€l, i€Jda

Using (32) in (41), we have

A {ﬂ(t)T(iEZI (wioms+ i) + PR )
t)T< 3w )bl + > Wt)gﬁ)}dt =0,a=1,2,...r.

i€l j€Ju

This can be written as

o NT > (we Be+i0) + X e
[ (ea0) \F0s s 5 o | #°

€1, j€Jo

Using (14) and (15) in (26) and (27) respectively

> ta-)( 3 (wers+i0) + T ool
a=1 i€l i€
+/8(t)T(f:cx + ’\(t>ngw + ﬂ(t) hss)

10T (fuz + M) gue + ()T huz) =0, € T
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and

Z(% ~ T)( > EHR, + > N( t)gu>

i€, JE€Ja
+mwﬂhu+Mﬁ%W+uo hau)
0T (fuu + AB)T Guu + p(t) T ho) =0, t €L
Combining these relations, we have

r EZ (W (RS + i (t)) + EE; X (t)gh
— i€l J€Ja
Z(” 7) ( 5 O+ T Vb )
fzz + )\(t)Tg:mc + lll(t)Th:cz) Juz + )\( ) Guz -+ /'L(t)Thua:
Feu + AT gou + p(t)T Bzu, fuz + M) Guz + ()7 hug
a0\
+(0(t)) =0,t€l. (43)

Pre-multiplying (43) by (8(t),8())” and then using (42), we have

/ b (ﬁm, 0(1?)) ") (ﬁ) dt =

Fez + AT G + 1O haz, Fuz + M) Guz + () b
t) = .
where M(?) <fm AT g + 1) s fam + A G + (D) P
This, in view of (H;), yields

o(t) (0(%)) _0, tel

B(t) =0 = 6(t),t € I. (44)

That is,

Using (28) in (29), we have

r (Z (B, +EEE) + 20 /\’(t)gJ)
T) =0

icla J€Ja
2 (e > o+ 3 Ve

i€l j€Ja
This, because of the hypothesis (Hy), gives

Yo =Ta=12...,7 (45)

If 7 = 0, then 74 = 0,a = 1,2,...,r from (45), = 0 from (30) and (31),
consequently, (1,7,...,9, B(t), 8(t),n(t)) = 0,t € I but this contradicts (35).
Hence r =7, >0, 0=1,2,...,r

Using (44) in (28) and (29) along with 7>0, 74, (& = 1,2,...,7) and §*(t) > 0
t € I we have

RE—i>0,ielhand B'—3 >0,i€ly,a=1,2,...,7
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This implies

h(t,z,a) - z(t) > 0,t € I. (46)
Using (44) in (30) and (31) together with 7>0, v,>0, & =1,2,...r, we have
g(t,z,8) <0, t €. 47)

The relation (46) and (47) implies that, (Z, @) is feasible for (CP).
Using (44) with 7>0 in (40), we have

/:(Zui(t) —z)+ ) N(t)g )dt

iel, j€Jo
This accomplishes the equality of objective values of (CP) and (Mix CD), i.e

/abf(t,f;,ﬁ)dt:/ab (f(t,i,'&)—l—z;f(t) +Z)\J j iﬁ)dt.

i€l, jE€Jo
If, all feasible (xz,u, A, 1), < [+ Z pi(ht -3 + Z Mg >dt is pseudoinvex
i€ly i€Jo
and / ( Z piht 4 Z Ng ) dt is quasi-invex with respect to the same 5 and
a i€l FE€Ju
¢, then from Theorem 1, (Z, %) is an optimal solution of (CP).

4. Control Problem with Free Boundary Conditions

The duality results established in the preceding section can be applied to the
control problem with free boundary conditions. If the “targets” z(a) and z(b)
are not restricted, we have

Problem PF (Primal): Maximize f: [t z,u)dt
subject to
hit,z,u)=z,t €1
g(t,z,u)<0,t € I.

This duality now includes the transversality p(t) =0, at ¢t = a and ¢ = b as new
constraints. This implies

Problem DF (Dual):

Maximize/a[t:cu)JrZu (hztzu)—z>+zx\ﬂ (t,x,u)Jdt

Subject to  ufa) =0, ,u(zlf)loz 0, e
fe(t,zyuw) + p@®)The(t, 2, u) + AT g2 (¢, z,u) + 4(t) = 0,t € I,
fult,z,u) + p(t) T ha(t, 3, u) + M) gu(t, 7,u) =0,t € I,

I ( X HOGt T, u) )+ 3 Aj(t)gf(t,w,u))dtz 0,

i€ly Jj€JN

A(t)>0,t € I.
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5. Related Control Problems and Mathematical Programming

We now consider some special cases of (Mix CD). If Iy = N and Jp = K,
then (Mix CD) becomes the following Wolfe type dual, considered by Mond and
Smart [9] under invexity of

/ fdt, / &)dt and / AT gdt

(WCD): Maxmuze/ (f(t, z,u) + u(t)” (h(t, T,u)— a:) + AT g(t, z, u))dt

a
subject to

z(a) = &, z(b) = B,

fa(t, 2, u) + u(t)T ha(t, z,u) + M) go(t, z,u) + iu(t) =0,t € I,
fu(t,z,u) + u(t)Thu(t, z,u) + )\(t)Tgu(t,a:, u)=0,tel,
At)=0,t € I.

If Iy = ¢ and Jy = ¢, then (Mix CD) becomes following Mond — Weir type dual
recently considered by Husain et al. [6] in order to relax invexity requirement
on suitable forms of functionals involved in the formulation of the dual:

b
(M-WCD):  Maximize / [t z,u)dt

subject to

z(a) = 6, 2(8) = 5,

Folt,z,u) + AT g2ty z,0) + p(t) he + 3(t) =0,t €1,
Fult, @, w) + M) gult,z )+u( )Thy =0,t el

/ab (Z"(t T(h x) .S (WT o u)))dtzo,

i€ly J€Ja
A(t)>0,t € I.

If f, g and h are independent of ¢ (without any loss of generality, assume b—a =
1), then the control problems (CP) and Mix (CD) reduce to a pair of static
primal and dual of mathematical programming, consider by Mond and Weir [8]
the duality results of this

Putting z = (), we have

Problem(PS):  Minimize f(2)
Subject to
h(z) =0,
9(2)<0.
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Problem (Mix DS):  Maximize f(z) + Z PRt (2) + Z X g (2)

i€lp J€Jdo
Subject to
fz(z) + /-/'Thz(z) + /\ng(z) =0
Z uthi(z) + Z Ng(z) >0,a=1,2,...,r
i€l J€Ja
A>0,

where A € RF and 1 € R™.

1.

10.

11.
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