Commun. Korean Math. Soc. 27 (2012), No. 2, pp. 411-423
http://dx.doi.org/10.4134/CKMS.2012.27.2.411

OPTIMALITY CONDITIONS AND DUALITY FOR
SEMI-INFINITE PROGRAMMING INVOLVING
SEMILOCALLY TYPE I-PREINVEX AND RELATED
FUNCTIONS

MONIKA JAISWAL, SHASHI KANT MISHRA, AND BADER AL SHAMARY

ABSTRACT. A nondifferentiable nonlinear semi-infinite programming pro-
blem is considered, where the functions involved are n-semidifferentiable
type I-preinvex and related functions. Necessary and sufficient optimal-
ity conditions are obtained for a nondifferentiable nonlinear semi-infinite
programming problem. Also, a Mond-Weir type dual and a general Mond-
Weir type dual are formulated for the nondifferentiable semi-infinite pro-
gramming problem and usual duality results are proved using the concepts
of generalized semilocally type I-preinvex and related functions.

1. Introduction

Generalized convexity plays a central role in mathematical economics and
optimization theory. Therefore, generalized convexity is now one of the very
active research areas. Various generalizations of convex functions have ap-
peared in literature. Among all generalized convex functions, we use the class
of semilocally type I-preinvex functions in this paper.

An important generalization of convex functions termed as semilocally con-
vex functions was introduced by Ewing [2]. Kaul and Kaur [6] defined semilo-
cally quasiconvex and semilocally pseudoconvex functions and obtained suffi-
cient optimality conditions for a class of nonlinear programming problems in-
volving such functions. Kaur [7] obtained necessary optimality conditions and
duality results by taking the objective and constraint functions to be semilo-
cally convex and their right differentials at a point to be lower semicontinuous.
A significant generalization of convex functions termed preinvex functions was
introduced by Weir and Mond [15]. Yang [16] and Li [17] obtained some prop-
erties of preinvex function. Noor [10] studied some properties of a class of
nonconvex functions, called semipreinvex functions, which includes the classes
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of preinvex functions and arc-connected convex functions. Preda et al. [13] in-
troduced the concepts of semilocally preinvex, semilocally quasi-preinvex and
semilocally pseudo-preinvex functions. Fritz John and Kuhn-Tucker necessary
optimality conditions and sufficient optimality conditions were given and du-
ality results stated for Wolfe and Mond-Weir types duals using these concepts.
Preda and Stancu-Minasian [12] extended these results to a multiple objective
programming problem.

In [3], Hanson and Mond introduced two new classes of functions called
type I and type II functions, both closely related to, but more general than
invex functions. Additional conditions are attached to the Kuhn-Tucker con-
ditions giving a set of conditions which are both necessary and sufficient for
optimality in constrained optimization, under appropriate constraint qualifi-
cations. Rueda and Hanson [14] defined pseudo-type I and quasi-type I and
obtained sufficient optimality criteria for a nonlinear programming problem in-
volving these functions. Hanson et al. [4] extended a (scalarized) generalized
type I invexity into a vector invexity (V-type I). A number of sufficiency results
and duality theorems have been established under various types of generalized
V-type I setting.

Motivated by above discussed papers on generalized type I invexity and the
work of Preda [11] and Mishra et al. [8, 9], in this paper, we have obtained
necessary and sufficient optimality conditions for a nondifferentiable nonlin-
ear semi-infinite programming problem involving n-semidifferentiable type I-
preinvex functions. We have also formulated a Mond-Weir dual and a general
Mond-Weir dual for a nonlinear semi-infinite programming problem. Duality
results are proved using the concepts of generalized semilocally type I-preinvex
functions.

2. Definitions and preliminaties

In this section we recall, for convenience of reference, a number of basic
definitions that will be used throughout the paper.

For z,y € R", by <y we mean z;<y; for all i, <y means z;<y; for all ¢
and z; < y; for at least one j, 1<j<n. By v < y we mean z; < y; for all i.

Let Xy C R"™ be a set and 7 : Xy x Xg — R” be a vectorial application. We
say that the set Xy is n-vex at T € X if T+ M (2, %) € X for any x € X and
A € [0,1]. We say that X is n-vex if X is 7-vex at any = € Xj.

We remark that if n (z,T) = x — T for any x € Xy, then X is n-vex at T if
and only if X is a convex set at T.

The following definitions are taken from Preda [11].

Definition 1. We say that the set Xy C R" is an n-locally starshaped set
at T, T € Xo, if for any & € Xy, there exists 0 < a, (z,%) <1 such that
T+ An(z,7) € X for any A € [0, a, (z,7)].

Definition 2. Let f : Xg — R" be a function, where Xy C R" is an n-locally
starshaped set at T € Xy. We say that f is:
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(i) semilocally preinvex (slpi) at T if, corresponding to Z and each = € X,
there exists a positive number d, (z,Z) <a, (z,Z) such that f(Z + A\ (z,7))
SAf(x)+ (1= X)) f(T) for 0 < X < dy, (z,T);

(ii) semilocally quasi-preinvex (slgpi) at T if, corresponding to T and each = €
Xo, there exists a positive number d, (z,T) <a, (z,T) such that f(z)<f(Z)
and 0 < A < d, (z,7) implies f (T + A (z,T)) <f (T).

Definition 3. Let f : Xy — R" be a function, where Xy C R" is an 7-
locally starshaped set at T € Xy. We say that f is n-semidifferentiable at T if
(df)" (%, n (z,T)) exists for each = € Xo, where

- = N = -
(df)" (@ (@,7) = lim < [f @+ (2,7)) = f (@)

(the right derivative at T along the direction 7 (z,Z)).
If f is p-semidifferentiable at any T € Xy, then f is said to be n-semidifferent-
iable on Xj.

Definition 4. We say that f is semilocally pseudo-preinvex (slppi) at Z if for
any x € Xy,
(df)" (@0 (2.7) 20 = f (@) 2f (7).
If f slppi at any T € X, then f is said to be slppi on Xj.

Theorem 1. Let f: Xg — R™ be an n-semidifferentiable function at T € Xg.
If f is slgpi at T and f (x) <f (T), then df)* (z,n (z,7)) <0.

Definition 5 (Elster and Nehse [1]). A function f : Xy — R™ is a convexlike
function if for any x,y € Xy and 0<A<L1, there is z € X such that

FER)EAf (@) + A =X) f(y).
Remark 1. The convex and the preinvex functions are convexlike.
Lemma 1 (Hayashi and Komiya [5]). Let S be a nonempty set in R™ and
S — RF be a convealike function. Then either
¥ () <0 has a solution x € S
or
M () >0 for all x € S,
for some A\ € R¥_\ >0, but both alternatives are never true.
Theorem 2. Let T € X be a (local) weak minimum solution for the following
problem:
minimize (f1(x),..., fp (z))
subject to g (m, u’) <0,i€1,
r € Xo,
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where U C R™ is an infinite countable set, f = (f1,...,fp) :+ Xo — RP
and g : Xg x U — R™ are n-semidifferentiable at T. Also, we assume that
g (z,u?) (i € J(T)) is a continuous function at T and ()" (z,n(x,T)) and
(dg)" (@, n(z,7)),u") are convezlike functions on Xo, where I = {i: g (z,u’)
<0,z € Xo,u' € U}, the set of i for which our constraint is active, I (T) =
{i i g (x,ui):07x € Xo,u' € U} andJ(E):{i 1 g (m,ui) <0,z € Xp,u* € U},
If g (w,uz) satisfies a regularity condition at T (see [12, Definition 3.2]), then
there exist \° € RP and A = (N\;);c; € R™ such that

X () (@1 (2,7)) + Lges M (do) (@, (2,7)) ) for all z € Xo,
Z)\ig (E, uz) =0,9 (E, ul) <0,

iel
e =1, A >0, A>0,
where e = (1,...,1)" € RP.

3. Necessary optimality conditions

In this paper, we consider the following nonlinear semi-infinite programming
problem (P):

minimize (fy (z),..., fp (z))
subject to g (z,u) <0, (uweU)
z € Xy,

where Xy C R" is a nonempty set and U C R™ is an infinite countable
set. Let f = (f1,...,fp) : Xo > RP, g : Xo xU — R™. We put X =
{x €eXo:yg (a:,uz) <0,z €u’ e U} for the feasible set of problem (P).

The following definitions are taken from Mishra et al. [8].

Definition 6. We say that the problem (P) is n-semidifferentiable type I-
preinvex at T if for any = € X, we have

Fi (@) = 13 @) 2 (df)" @0 (22), Vie M={1,2...p},
—g (T, uz) i(dg)+ ((f,n (z,T)) ,ui) , Viel.

Definition 7. (i) We say that the problem (P) is n-semidifferentiable pseudo-
quasi-type I-preinvex at T if for any z € X, we have

(df))" @0 (2,2) 20 = f; (2) 2f; (@), Vi€ M,

—g (T, ul) <0= (dg)Jr ((f,n (z,T)) ,ui) <0, Vi e I.
The problem (P) is n-semidifferentiable pseudo-quasi-type I-preinvex on X
if it is m-semidifferentiable pseudo-quasi-type I-preinvex at any T € Xj.
(ii) We say that the problem (P) is n-semidifferentiable strict pseudo-quasi-
type I-preinvex at T if for any € Xy and x # T, we have

(df;)" (@ n(x,7) 20 = f; (x) > f; (T), Vi€ M,
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—g(T,u") 0= (dg)* (@, 0 (x,7)) ,u') 0, Vi € .

The problem (P) is n-semidifferentiable strict pseudo-quasi-type I-preinvex
on Xy if it is n-semidifferentiable strict pseudo-quasi-type I-preinvex at any
T € Xo.

Definition 8. We say that the problem (P) is n-semidifferentiable quasi-
pseudo-type I-preinvex at T if for any « € Xy, we have

£ (@) <f; @) = (dfy)" @0 (2,7) 20, Vj € M,
(dg)" (@, n (2,7)),u') >0 = —g (7,u’) >0, Vi € I.
The problem (P) is n-semidifferentiable quasi-pseudo-type I-preinvex on X

if it is n-semidifferentiable quasi-pseudo-type I-preinvex at any T € Xj.

Definition 9. For the problem (P), a point T € X is said to be a weak
minimum if there exists no feasible point x for which f (Z) > f (z).

ForZ € X, we put I (T) = {z g (ac,u’) =0,z € Xg,u' € U}7 P =g (x,ui),
i€l(x) and J(T)={i:g(z,u') <0,z € Xo,u' € U}.
Definition 10. We say that (P) satisfies the generalized Slater’s constraint

qualification (GSCQ) at T € X if ¢g" is slppi at T and there exists an & € Xg
such that ¢° (;%,ui) < 0.

Lemma 2. Let T € X be a (local) weak minimum solution for (P). Further,
we assume that g (;v,ul) is continuous at T for any i € J (%) and f,g° are
n-semidifferentiable at T. Then the system

df) " (@.n(2,7)) <0,

(1) (dg°)" (@, n (z,7)) ,u') <0,
has no solution x € Xj.

Proof. Let T be a (local) weak minimum solution for (P) and suppose there
exists * € X such that

(2) (df)" (@, (z*, 7)) <0,

t (/= * = [
(3) (dg°)" ((@n(2*,7)),u’) <0
Let o (Z,2*,\) = f(T+ A\ (z*,T)) — f (). We have ¢ (Z,z*,0) = 0 and the
right differential of ¢ (T, z*,0) with respect to A at A = 0 is given by
T S . T Iy * =Ny g (e
lim + [ (Z,27, ) — ¢ (7,27,0)] = lim < [f (T + A (27, 7)) ~ f (7)]
or

lim o (7,2, ) — ¢ (7,27,0)] = (d)* @0 (2",7)
Using (2), we get

1
lim ~ [ (72", \) — ¢ (T, 2" .
Alir}))\[cp(x,x,/\) ¢ (Z,2",0)] <0
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Hence, ¢ (Z,2*,\) < 0 if A is in some open interval (0,01),d1 > 0; i.e.,
f@+M(x",7) < f(@), A€ (0,61).
Similarly, we get
" (@ + M (z*,7)),u’") < ¢° (T,u") =0, A€ (0,85),82 > 0.
Now, for ¢ € J(Z),g (x,ul) < 0andg (x,ul) is continuous at T, therefore,
there exists § > 0 such that
g (@+ An(z*,7)),u") <0, A€ (0,5/) for any i € J ().

Let 0=min(d;, 02,8 ). Then
(4) f‘f')”?(l’*,f)ES&(E)QN(S(@’)\E (075)7

where S5 (T) is a hypersphere around T and Nj () is a neighbourhood of Z.
Now, we have

() @+ (2"7) < f(T),

(6) g(@+ A (z*,2)),u") <0
for any A € (0, 9).
By (4) and (6), we have T + An (z*, %) € Xo N Ns (T) for any A € (0, 9).
Using (5), for Q (z) = (f1 (z), ..., fp (x)), we get
Q@+ n(2",7)) <Q(7),
which contradicts the assumption that T is a (local) weak minimum solution of

(P). Hence there exists no z € X, satisfying the system (1). Thus the lemma
is proved. O

In the next theorem, we obtain an important result of Fritz-John type nec-
essary optimality criteria.

Theorem 3 (Fritz-John type necessary optimality criteria). Let us suppose
that g (x,u') is continuous at T fori € J (T), (df)* (z,n (z,T)) and (ng)Jr ((z,
n(z,T)),u’) are convexlike functions on Xo. If T is a (local) weak minimum
solution for (P), then there exist \° € R? and X\ = (\;);c; € R™ such that

(7) A" (d) @ (2,2) + Y i (dg°) T (@0 (2,7)) ,u’) 20 for allz € Xo,

iel

(8) Z Aig (T,u') =0,

i€l

) (A0.2) #0. (A, 3) 20,
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Proof. f T is a (local) weak minimum solution for (P) then, by Lemma 2, the
system (1) has no solution x € Xy. But the assumption of Lemma 1 also holds
and since the system (1) has no solution 2 € Xy, we obtain that there exist \° €
RP, \; € R (i € I (z)), such that \° = 0, \; = 0 (i € I (7)), ()\0 Miere) ) £0,
with

(10)
A0 df)* (@, n (z,7) Z Ai (dg°) " (@, n (z,7)),u’) >0 for all z € X,.
1€I(T)
If we put \; = 0 for ¢ € J(T), by (10) we get (7). Finally, the relation (6)
follows obviously and the proof is complete. O

Theorem 4 (Karush-Kuhn-Tucker type necessary optimality criterion). Let
T € X be a (local) weak minimum solution for (P), let g (x,u’) be continuous

at T fori € J () and let (df;)" (@, n (2, 7)) (j=1,2,...,p) and (dgo)+ ((z,
n(z,7)),u’) be convezlike functions on Xo. If g satisfies (GSQ) at T, then
there exist \° € R, X € R™, such that

P
D ONf) T @ (,E) + Y N (dg) (@0 (2,7)),u’) 20 for all z € X,
Jj=1 iel
Z)\ig (E, uz) =0,9 (E, ul) <0,
i€l
Ae=1, A2>0, A>0,
where e = (1,...,1)" e RP.

Proof. I 7 is a (local) weak minimum solution for (P). Now, applying Theorem
2 to problem (P), we get that there exist, A\’ € R, X € R™ such that

(11)
Z )\? df;))" @, n (2, 7)) + Z Ai (dg)* (Z,n(z,2)),u") >0 for all z € X,
j=1 iel

(12) Z Aig (T,u') =0,

i€l
(13) g (z,u") <0,
(14) AT =1,
(15) A0 >0, x>0,

and the theorem is proved. (I
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4. Sufficient optimality criteria

In this section, using the concept of (locally) weak optimality, we give some
sufficient optimality conditions for the problem (P).

Theorem 5. Let T € X and (P) be n-semilocally type I-preinver at T. Also,
we assume that there exist \’ € RP and A € R™ such that

(16)
Z A (df)t (@, (x,7) + Z A (dg)* ((@,n(z,7)),u") >0 forallz € X,
j=1 el

(17) Z Aig (T,u") =0,

el
(18) AN =1,

(19) A0 >0, A>0.
Then T is a weak minimum solution for (P).

Proof. We proceed by contradiction. Let there exists & € X such that

(20) i (@) < f; (%) for any j € M, where M = {1,2,...,p}.
Since (P) is n-semilocally type I-preinvex at T, we get

(21) 15 (@) = 15 @) 2 (df;) " (@0 (2,7), j € M,

and

(22) —g (@,u') > (dg)" (@0 (2,7)),u"), i€l

Multiplying (21) by )\220, j € M, X\ e€R,, (22) by \;>0, i € I, and then
summing the obtained relations, we get

DN (i (@) )= Nig (T, ')
j=1 el

> Y N @0 (@2)+ Y N (dg)T (@ n(2,7)),u’) 20,
j=1 i€l

where the last inequality is according to (16). Hence,
P
(23) 2N @) = £ @) = 3 g (7 u') 20
j=1 iel
Since z € X, A>0, by (17) and (23), we get

(24) S X (f5 (&) - £ () 20.
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Using (18), (19) and (24), we obtain that there exists jo € M such that

fjo (i') 2fj0 (f) )

which is a contradiction to (20). Thus, the theorem is proved and 7 is a weak
minimum solution for (P). O

Theorem 6. Let T € X, A\’ € R? and A\ € R™ such that the conditions
(16)-(19) of Theorem 5 hold. Moreover, we assume that (P) is n-semilocally
pseudo-quasi-type I-preinver at T. Then T is a weak minimum solution for (P).

Proof. We assume that T is not a weak minimum solution for (P). Then there
exists £ € X such that

[; (@) < f;j () forany j e M.
Now, by the n-semilocally pseudo-quasi-type I-preinvexity of (P) at T, we get
(df;))" (@,n(2,7)) <0 for any j € M.

Using \) € RY, A" ¢ = 1, we obtain
P
(25) D AT (@ (3,7) <.
j=1

For i € I (%), g (7, u’) = 0.
Hence,

—g (z,u") <0 for any i€ I (7).

Now, again by n-semilocally pseudo-quasi-type I-preinvexity of (P) at T, we
obtain

(dg)* ((x,n(2,7)),u") <0 for any i€ I(T).
But A € RT" and then taking A\; = 0 for i € J (), we get
(26) > Ai(dg)" (@ (7,7)), u') 0.
iel
Now, by (25) and (26), we obtain
p .
SN @ (3.3)+ Y N (dg)T (@, (2,7)),u) <0,
j=1 el

which is a contradiction to (16). Hence is a weak minimum for (P) and the
theorem is proved. (I
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5. Duality
We consider, for (P), a Mond-Weir dual (MWD) as

maximize f (y)

subject to
(27)
p .

Z)\g (df;)" (y,n (x,y) —l—Z)\ (dg)* ((y,n (2,y)),u') >0 for all z € X,

j=1 iel
(28) > g (y,u') >0,

iel
Ae =1, \2>0, A\’ cRP,

(29) )\20, y € Xop.

Let W denote the set of all feasible solutions of (MWD). Now we establish
certain duality results between (P) and (MWD). Assume that f and g are
n-semidifferentiable on X.

Theorem 7 (Weak duality). Assume that x is feasible for (P) and (y,u’, A%, X)
is feasible for (WMD). If the pair of functions f; (.) and Y,c; Xig (., u') is n-
semilocally pseudo-quasi-type I-preinvex at y for all j € M, then

fi () <t (x) for any j € M.
Proof. Suppose on contrary that
(30) £ () > f; (x) for any j € M.

Since the pair of functions f; (-) and ), Aig (,ul) is m-semilocally pseudo-
quasi-type I-preinvex at y for all j € M, from (30) we get

(alfj)+ (y,m(z,y)) <0 for any j € M.

Using \) € RY, A0 ¢ = 1, we obtain

(31) DN () (s () < 0.

Now, from (28), we get
= Xig (y,u') <0
il
Hence, we have

(32) > Xi(dg)™ ((y,m (2,y)) ,u') <0.

icl
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Adding (31) and (32), we get
Z X ()" (o (2.9) + Y i (dg)™ ((wsm (), u') <0,
=1 iel

which is a contradiction to (27). Hence,
fi(y) <f; (x) for any j € M. O

Now, we consider, for (P), a general Mond-Weir dual (GMWD) as
maximize [+ Y., Aig (y,u’)

subject to
(33)
p .
Z A ()" (. (z,y)) + Z Xi (dg)™ ((y,m (2,9)) ,u') >0 for all v € X,
j=1 i€l
(34) > Xig (y,u') 20 (1<5<9),
i€l
ANe=1, \>0, \°cR?,
(35) A>0, y € Xo,

where 'y>1 I;NL=¢for s #tand JI_, s = I
Let W' denote the set of all feasible solutions of (GMWD). Also, we define

the following sets:
A={(\2) R x R™: (y,u’,A°, \) € W for some y € Xo |,
and, for (\°, 1) € A,
B(\,\) = {y € Xo: (y,u', A% )) € W’}.

We put B = U(/\O,A)eA B ()\0, )\) and note that B C Xy. Also, we note that if
(y,u’, A% A) € W', then (\°,\) € A and y € B (A% ).

Now we establish certain duality results between (P) and (GMWD). Assume
that f and g are n-semidifferentiable on X.

Theorem 8 (Weak duality). Assume that for all feasible solutions x € X
and (y,u’, A% X) € W' for (P) and (GMWD), respectively, the pair of func-
tions fj ()42 icr, Aig (-,u') and > el Mg (y,u’), for 1<s<~, is n-semilocally
strict pseudo-quasi-type I-preinver at y on B ()\0, )\) for all j € M. Then the
following cannot hold:

(36) [ (@) <f; (y) + Z Nig (y,u*) for any j € M.
i€lp
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Proof. Using the feasibility of (y, u?, A9, )\) for (GMWD), we obtain
(37) - Z Aig (y,u') <0 for all 5, 1<s<~.
i€l

By (37) and assumption of the theorem, we get
(38) > Ni(dg)t ((yon (z,y)) ,u') <0, 1<s<y.

i€l
Now, we suppose to the contrary that (36) hold. Hence, using (36) and feasi-
bility of « for (P), we obtain

(39) I (@) + Z Aig (z,u") < f; (y) + Z Aig (y,u") for any j € M.
iclo iclo

Using assumption of the theorem and (39), we can have

(40)  (dfy)™ (wom (2,9) + D Xi (dg)™ (. (x,)), ') <0 for any j € M.

i€l

By (35) and (40), we get
SN @D @ (@) + D A (dg) " ((y.n (2,1)) ,u’) < 0.
j=1 i€lp

Now, by (33) and above equation, we obtain

SN Aildg)T ((won (@,y) ,u') >0,

s=14i€l,

which is a contradiction to (38). Thus, the theorem is proved. O

Theorem 9 (Weak duality). Assume that for all feasible solutions © € X
and (y7ui7)\0,)\) e W' for (P) and (GMWD), respectively, the pair of func-
tions fj (-)+> icr, Aig (-,u) and > icl. g (y,u'), for 1<s<r, is n-semilocally
pseudo-quasi-type I-preinvex aty on B ()\0, )\) for all j € M with A\g > 0. Then
the following cannot hold:

Fi (@) <5 () + Yies, Nig (y,u?) for any j € M.
Proof. The proof is very similar to the proof of Theorem 8. O
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