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OPTIMALITY CONDITIONS AND DUALITY FOR

SEMI-INFINITE PROGRAMMING INVOLVING

SEMILOCALLY TYPE I-PREINVEX AND RELATED

FUNCTIONS

Monika Jaiswal, Shashi Kant Mishra, and Bader Al Shamary

Abstract. A nondifferentiable nonlinear semi-infinite programming pro-
blem is considered, where the functions involved are η-semidifferentiable
type I-preinvex and related functions. Necessary and sufficient optimal-
ity conditions are obtained for a nondifferentiable nonlinear semi-infinite

programming problem. Also, a Mond-Weir type dual and a general Mond-
Weir type dual are formulated for the nondifferentiable semi-infinite pro-
gramming problem and usual duality results are proved using the concepts
of generalized semilocally type I-preinvex and related functions.

1. Introduction

Generalized convexity plays a central role in mathematical economics and
optimization theory. Therefore, generalized convexity is now one of the very
active research areas. Various generalizations of convex functions have ap-
peared in literature. Among all generalized convex functions, we use the class
of semilocally type I-preinvex functions in this paper.

An important generalization of convex functions termed as semilocally con-
vex functions was introduced by Ewing [2]. Kaul and Kaur [6] defined semilo-
cally quasiconvex and semilocally pseudoconvex functions and obtained suffi-
cient optimality conditions for a class of nonlinear programming problems in-
volving such functions. Kaur [7] obtained necessary optimality conditions and
duality results by taking the objective and constraint functions to be semilo-
cally convex and their right differentials at a point to be lower semicontinuous.
A significant generalization of convex functions termed preinvex functions was
introduced by Weir and Mond [15]. Yang [16] and Li [17] obtained some prop-
erties of preinvex function. Noor [10] studied some properties of a class of
nonconvex functions, called semipreinvex functions, which includes the classes
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of preinvex functions and arc-connected convex functions. Preda et al. [13] in-
troduced the concepts of semilocally preinvex, semilocally quasi-preinvex and
semilocally pseudo-preinvex functions. Fritz John and Kuhn-Tucker necessary
optimality conditions and sufficient optimality conditions were given and du-
ality results stated for Wolfe and Mond-Weir types duals using these concepts.
Preda and Stancu-Minasian [12] extended these results to a multiple objective
programming problem.

In [3], Hanson and Mond introduced two new classes of functions called
type I and type II functions, both closely related to, but more general than
invex functions. Additional conditions are attached to the Kuhn-Tucker con-
ditions giving a set of conditions which are both necessary and sufficient for
optimality in constrained optimization, under appropriate constraint qualifi-
cations. Rueda and Hanson [14] defined pseudo-type I and quasi-type I and
obtained sufficient optimality criteria for a nonlinear programming problem in-
volving these functions. Hanson et al. [4] extended a (scalarized) generalized
type I invexity into a vector invexity (V-type I). A number of sufficiency results
and duality theorems have been established under various types of generalized
V-type I setting.

Motivated by above discussed papers on generalized type I invexity and the
work of Preda [11] and Mishra et al. [8, 9], in this paper, we have obtained
necessary and sufficient optimality conditions for a nondifferentiable nonlin-
ear semi-infinite programming problem involving η-semidifferentiable type I-
preinvex functions. We have also formulated a Mond-Weir dual and a general
Mond-Weir dual for a nonlinear semi-infinite programming problem. Duality
results are proved using the concepts of generalized semilocally type I-preinvex
functions.

2. Definitions and preliminaties

In this section we recall, for convenience of reference, a number of basic
definitions that will be used throughout the paper.

For x, y ∈ Rn, by x≤y we mean xi≤yi for all i, x≤ y means xi≤yi for all i
and xj < yj for at least one j, 1≤j≤n. By x < y we mean xi < yi for all i.

Let X0 ⊆ Rn be a set and η : X0 ×X0 → Rn be a vectorial application. We
say that the set X0 is η-vex at x ∈ X0 if x+λη (x, x) ∈ X0 for any x ∈ X0 and
λ ∈ [0, 1]. We say that X0 is η-vex if X0 is η-vex at any x ∈ X0.

We remark that if η (x, x) = x− x for any x ∈ X0, then X0 is η-vex at x if
and only if X0 is a convex set at x.

The following definitions are taken from Preda [11].

Definition 1. We say that the set X0 ⊆ Rn is an η-locally starshaped set
at x, x ∈ X0, if for any x ∈ X0, there exists 0 < aη (x, x)≤1 such that
x+ λη (x, x) ∈ X0 for any λ ∈ [0, aη (x, x)].

Definition 2. Let f : X0 → Rn be a function, where X0 ⊆ Rn is an η-locally
starshaped set at x ∈ X0. We say that f is:
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(i) semilocally preinvex (slpi) at x if, corresponding to x and each x ∈ X0,
there exists a positive number dη (x, x)≤aη (x, x) such that f (x+ λη (x, x))
≤λf (x) + (1− λ) f (x) for 0 < λ < dη (x, x);

(ii) semilocally quasi-preinvex (slqpi) at x if, corresponding to x and each x ∈
X0, there exists a positive number dη (x, x)≤aη (x, x) such that f (x)≤f (x)
and 0 < λ < dη (x, x) implies f (x+ λη (x, x))≤f (x).

Definition 3. Let f : X0 → Rn be a function, where X0 ⊆ Rn is an η-
locally starshaped set at x ∈ X0. We say that f is η-semidifferentiable at x if
(df)

+
(x, η (x, x)) exists for each x ∈ X0, where

(df)
+
(x, η (x, x)) = lim

λ→0+

1

λ
[f (x+ λη (x, x))− f (x)]

(the right derivative at x along the direction η (x, x)).
If f is η-semidifferentiable at any x ∈ X0, then f is said to be η-semidifferent-

iable on X0.

Definition 4. We say that f is semilocally pseudo-preinvex (slppi) at x if for
any x ∈ X0,

(df)
+
(x, η (x, x))≥0 ⇒ f (x)≥f (x) .

If f slppi at any x ∈ X0, then f is said to be slppi on X0.

Theorem 1. Let f : X0 → Rn be an η-semidifferentiable function at x ∈ X0.
If f is slqpi at x and f (x)≤f (x), then (df)

+
(x, η (x, x))≤0.

Definition 5 (Elster and Nehse [1]). A function f : X0 → Rn is a convexlike
function if for any x, y ∈ X0 and 0≤λ≤1, there is z ∈ X0 such that

f (z)≤λf (x) + (1− λ) f (y) .

Remark 1. The convex and the preinvex functions are convexlike.

Lemma 1 (Hayashi and Komiya [5]). Let S be a nonempty set in Rn and
ψ : S → Rk be a convexlike function. Then either

ψ (x) < 0 has a solution x ∈ S

or

λTψ (x)≥0 for all x ∈ S,

for some λ ∈ Rk, λ ≥ 0, but both alternatives are never true.

Theorem 2. Let x ∈ X be a (local) weak minimum solution for the following
problem:

minimize (f1 (x) , . . . , fp (x))

subject to g
(
x, ui

)
≤0, i ∈ I,

x ∈ X0,
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where U ⊂ Rm is an infinite countable set, f = (f1, . . . , fp) : X0 → Rp

and g : X0 × U → Rm are η-semidifferentiable at x. Also, we assume that
g
(
x, ui

)
(i ∈ J (x)) is a continuous function at x and (df)

+
(x, η (x, x)) and

(dg)
+ (

(x, η (x, x)) , ui
)
are convexlike functions on X0, where I =

{
i : g

(
x, ui

)
≤ 0, x ∈ X0, u

i ∈ U
}
, the set of i for which our constraint is active, I (x) ={

i : g
(
x, ui

)
=0, x ∈ X0, u

i ∈ U
}
and J (x)=

{
i : g

(
x, ui

)
< 0, x ∈ X0, u

i ∈ U
}
.

If g
(
x, ui

)
satisfies a regularity condition at x (see [12, Definition 3.2]), then

there exist λ0 ∈ Rp and λ = (λi)i∈I ∈ Rm such that

λ0
T

(df)
+
(x, η (x, x)) +

∑
i∈I λi (dg)

+ (
(x, η (x, x)) , ui

)
for all x ∈ X0,∑

i∈I

λig
(
x, ui

)
= 0, g

(
x, ui

)
≤0,

λ0
T

e = 1, λ0 ≥ 0, λ≥0,

where e = (1, . . . , 1)
T ∈ Rp.

3. Necessary optimality conditions

In this paper, we consider the following nonlinear semi-infinite programming
problem (P):

minimize (f1 (x) , . . . , fp (x))

subject to g (x, u)≤0, (u ∈ U)

x ∈ X0,

where X0 ⊆ Rn is a nonempty set and U ⊂ Rm is an infinite countable
set. Let f = (f1, . . . , fp) : X0 → Rp, g : X0 × U → Rm. We put X ={
x ∈ X0 : g

(
x, ui

)
≤0, x ∈ ui ∈ U

}
for the feasible set of problem (P).

The following definitions are taken from Mishra et al. [8].

Definition 6. We say that the problem (P) is η-semidifferentiable type I-
preinvex at x if for any x ∈ X0, we have

fj (x)− fj (x)≥ (dfj)
+
(x, η (x, x)) , ∀j ∈M = {1, 2, . . . , p} ,

−g
(
x, ui

)
≥ (dg)

+ (
(x, η (x, x)) , ui

)
, ∀i ∈ I.

Definition 7. (i) We say that the problem (P) is η-semidifferentiable pseudo-
quasi-type I-preinvex at x if for any x ∈ X0, we have

(dfj)
+
(x, η (x, x))≥0 ⇒ fj (x)≥fj (x) , ∀j ∈M,

−g
(
x, ui

)
≤0 ⇒ (dg)

+ (
(x, η (x, x)) , ui

)
≤0, ∀i ∈ I.

The problem (P) is η-semidifferentiable pseudo-quasi-type I-preinvex on X0

if it is η-semidifferentiable pseudo-quasi-type I-preinvex at any x ∈ X0.
(ii) We say that the problem (P) is η-semidifferentiable strict pseudo-quasi-

type I-preinvex at x if for any x ∈ X0 and x ̸= x, we have

(dfj)
+
(x, η (x, x))≥0 ⇒ fj (x) > fj (x) , ∀j ∈M,
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−g
(
x, ui

)
≤0 ⇒ (dg)

+ (
(x, η (x, x)) , ui

)
≤0, ∀i ∈ I.

The problem (P) is η-semidifferentiable strict pseudo-quasi-type I-preinvex
on X0 if it is η-semidifferentiable strict pseudo-quasi-type I-preinvex at any
x ∈ X0.

Definition 8. We say that the problem (P) is η-semidifferentiable quasi-
pseudo-type I-preinvex at x if for any x ∈ X0, we have

fj (x)≤fj (x) ⇒ (dfj)
+
(x, η (x, x))≤0, ∀j ∈M,

(dg)
+ (

(x, η (x, x)) , ui
)
≥0 ⇒ −g

(
x, ui

)
≥0, ∀i ∈ I.

The problem (P) is η-semidifferentiable quasi-pseudo-type I-preinvex on X0

if it is η-semidifferentiable quasi-pseudo-type I-preinvex at any x ∈ X0.

Definition 9. For the problem (P), a point x ∈ X is said to be a weak
minimum if there exists no feasible point x for which f (x) > f (x).

For x ∈ X, we put I (x) =
{
i : g

(
x, ui

)
= 0, x ∈ X0, u

i ∈ U
}
, g0 = g

(
x, ui

)
,

i ∈ I (x) and J (x) =
{
i : g

(
x, ui

)
< 0, x ∈ X0, u

i ∈ U
}
.

Definition 10. We say that (P) satisfies the generalized Slater’s constraint
qualification (GSCQ) at x ∈ X if g0 is slppi at x and there exists an x̂ ∈ X0

such that g0
(
x̂, ui

)
< 0.

Lemma 2. Let x ∈ X be a (local) weak minimum solution for (P). Further,
we assume that g

(
x, ui

)
is continuous at x for any i ∈ J (x) and f, g0 are

η-semidifferentiable at x. Then the system

(df)
+
(x, η (x, x)) < 0,

(1)
(
dg0

)+ (
(x, η (x, x)) , ui

)
< 0,

has no solution x ∈ X0.

Proof. Let x be a (local) weak minimum solution for (P) and suppose there
exists x∗ ∈ X such that

(2) (df)
+
(x, η (x∗, x)) < 0,

(3)
(
dg0

)+ (
(x, η (x∗, x)) , ui

)
< 0.

Let φ (x, x∗, λ) = f (x+ λη (x∗, x)) − f (x). We have φ (x, x∗, 0) = 0 and the
right differential of φ (x, x∗, 0) with respect to λ at λ = 0 is given by

lim
λ→0

1

λ
[φ (x, x∗, λ)− φ (x, x∗, 0)] = lim

λ→0

1

λ
[f (x+ λη (x∗, x))− f (x)]

or

lim
λ→0

1

λ
[φ (x, x∗, λ)− φ (x, x∗, 0)] = (df)

+
(x, η (x∗, x)) .

Using (2), we get

lim
λ→0

1

λ
[φ (x, x∗, λ)− φ (x, x∗, 0)] < 0.
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Hence, φ (x, x∗, λ) < 0 if λ is in some open interval (0, δ1) , δ1 > 0; i.e.,

f (x+ λη (x∗, x)) < f (x) , λ ∈ (0, δ1) .

Similarly, we get

g0
(
(x+ λη (x∗, x)) , ui

)
< g0

(
x, ui

)
= 0, λ ∈ (0, δ2) , δ2 > 0.

Now, for i ∈ J (x) , g
(
x, ui

)
< 0 and g

(
x, ui

)
is continuous at x, therefore,

there exists δ
′
> 0 such that

g
(
(x+ λη (x∗, x)) , ui

)
< 0, λ ∈

(
0, δ

′
)
for any i ∈ J (x).

Let δ=min(δ1, δ2, δ
′
). Then

(4) x+ λη (x∗, x) ∈ Sδ (x) ⊆ Nδ (x) , λ ∈ (0, δ) ,

where Sδ (x) is a hypersphere around x and Nδ (x) is a neighbourhood of x.
Now, we have

(5) f (x+ λη (x∗, x)) < f (x) ,

(6) g
(
(x+ λη (x∗, x)) , ui

)
< 0

for any λ ∈ (0, δ).
By (4) and (6), we have x+ λη (x∗, x) ∈ X0 ∩Nδ (x) for any λ ∈ (0, δ).
Using (5), for Q (x) = (f1 (x) , . . . , fp (x)), we get

Q (x+ λη (x∗, x)) < Q (x) ,

which contradicts the assumption that x is a (local) weak minimum solution of
(P). Hence there exists no x ∈ X0 satisfying the system (1). Thus the lemma
is proved. □

In the next theorem, we obtain an important result of Fritz-John type nec-
essary optimality criteria.

Theorem 3 (Fritz-John type necessary optimality criteria). Let us suppose

that g
(
x, ui

)
is continuous at x for i ∈ J (x) , (df)

+
(x, η (x, x)) and

(
dg0

)+
((x,

η (x, x)) , ui
)
are convexlike functions on X0. If x is a (local) weak minimum

solution for (P), then there exist λ0 ∈ Rp and λ = (λi)i∈I ∈ Rm such that

(7) λ0
T

(df)
+
(x, η (x, x)) +

∑
i∈I

λi
(
dg0

)+ (
(x, η (x, x)) , ui

)
≥0 for all x ∈ X0,

(8)
∑
i∈I

λig
(
x, ui

)
= 0,

(9)
(
λ0, λ

)
̸= 0,

(
λ0, λ

)
≥0.
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Proof. If x is a (local) weak minimum solution for (P) then, by Lemma 2, the
system (1) has no solution x ∈ X0. But the assumption of Lemma 1 also holds
and since the system (1) has no solution x ∈ X0, we obtain that there exist λ0 ∈
Rp, λi ∈ R (i ∈ I (x)), such that λ0 ≧ 0, λi ≧ 0 (i ∈ I (x)) ,

(
λ0, (λi)i∈I(x)

)
̸= 0,

with
(10)

λ0
T

(df)
+
(x, η (x, x)) +

∑
i∈I(x)

λi
(
dg0

)+ (
(x, η (x, x)) , ui

)
≥0 for all x ∈ X0.

If we put λi = 0 for i ∈ J (x), by (10) we get (7). Finally, the relation (6)
follows obviously and the proof is complete. □

Theorem 4 (Karush-Kuhn-Tucker type necessary optimality criterion). Let
x ∈ X be a (local) weak minimum solution for (P), let g

(
x, ui

)
be continuous

at x for i ∈ J (x) and let (dfj)
+
(x, η (x, x)) (j = 1, 2, . . . , p) and

(
dg0

)+
((x,

η (x, x)) , ui
)
be convexlike functions on X0. If g satisfies (GSQ) at x, then

there exist λ0 ∈ Rp
+, λ ∈ Rm, such that

p∑
j=1

λ0j (dfj)
+
(x, η (x, x)) +

∑
i∈I

λi (dg)
+ (

(x, η (x, x)) , ui
)
≥0 for all x ∈ X0,

∑
i∈I

λig
(
x, ui

)
= 0, g

(
x, ui

)
≤0,

λ0
T

e = 1, λ0 ≥ 0, λ≥0,

where e = (1, . . . , 1)
T ∈ Rp.

Proof. If x is a (local) weak minimum solution for (P). Now, applying Theorem
2 to problem (P), we get that there exist, λ0 ∈ Rp

+, λ ∈ Rm such that
(11)

p∑
j=1

λ0j (dfj)
+
(x, η (x, x)) +

∑
i∈I

λi (dg)
+ (

(x, η (x, x)) , ui
)
≥0 for all x ∈ X0,

(12)
∑
i∈I

λig
(
x, ui

)
= 0,

(13) g
(
x, ui

)
≤0,

(14) λ0
T

e = 1,

(15) λ0 ≥ 0, λ≥0,

and the theorem is proved. □
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4. Sufficient optimality criteria

In this section, using the concept of (locally) weak optimality, we give some
sufficient optimality conditions for the problem (P).

Theorem 5. Let x ∈ X and (P) be η-semilocally type I-preinvex at x. Also,
we assume that there exist λ0 ∈ Rp and λ ∈ Rm such that
(16)

p∑
j=1

λ0j (dfj)
+
(x, η (x, x)) +

∑
i∈I

λi (dg)
+ (

(x, η (x, x)) , ui
)
≥0 for all x ∈ X,

(17)
∑
i∈I

λig
(
x, ui

)
= 0,

(18) λ0
T

e = 1,

(19) λ0 ≥ 0, λ≥0.

Then x is a weak minimum solution for (P).

Proof. We proceed by contradiction. Let there exists x̃ ∈ X such that

(20) fj (x̃) < fj (x) for any j ∈M, whereM = {1, 2, . . . , p} .

Since (P) is η-semilocally type I-preinvex at x, we get

(21) fj (x̃)− fj (x)≥ (dfj)
+
(x, η (x̃, x)) , j ∈M,

and

(22) −g
(
x, ui

)
≥ (dg)

+ (
(x, η (x̃, x)) , ui

)
, i ∈ I.

Multiplying (21) by λ0j≥0, j ∈ M , λ0 ∈ Rp, (22) by λi≥0, i ∈ I, and then
summing the obtained relations, we get

p∑
j=1

λ0j (fj (x̃)− fj (x))−
∑
i∈I

λig
(
x, ui

)
≥

p∑
j=1

λ0j (dfj)
+
(x, η (x̃, x)) +

∑
i∈I

λi (dg)
+ (

(x, η (x̃, x)) , ui
)
≥0,

where the last inequality is according to (16). Hence,

(23)

p∑
j=1

λ0j (fj (x̃)− fj (x))−
∑
i∈I

λig
(
x, ui

)
≥0.

Since x ∈ X, λ≥0, by (17) and (23), we get

(24)

p∑
j=1

λ0j (fj (x̃)− fj (x))≥0.
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Using (18), (19) and (24), we obtain that there exists j0 ∈M such that

fj0 (x̃)≥fj0 (x) ,

which is a contradiction to (20). Thus, the theorem is proved and x is a weak
minimum solution for (P). □

Theorem 6. Let x ∈ X, λ0 ∈ Rp and λ ∈ Rm such that the conditions
(16)-(19) of Theorem 5 hold. Moreover, we assume that (P) is η-semilocally
pseudo-quasi-type I-preinvex at x. Then x is a weak minimum solution for (P).

Proof. We assume that x is not a weak minimum solution for (P). Then there
exists x̃ ∈ X such that

fj (x̃) < fj (x) for any j ∈M.

Now, by the η-semilocally pseudo-quasi-type I-preinvexity of (P) at x, we get

(dfj)
+
(x, η (x̃, x)) < 0 for any j ∈M.

Using λ0j ∈ Rp
+, λ

0T e = 1, we obtain

(25)

p∑
j=1

λ0j (dfj)
+
(x, η (x̃, x)) < 0.

For i ∈ I (x), g
(
x, ui

)
= 0.

Hence,

−g
(
x, ui

)
≤0 for any i ∈ I (x) .

Now, again by η-semilocally pseudo-quasi-type I-preinvexity of (P) at x, we
obtain

(dg)
+ (

(x, η (x̃, x)) , ui
)
≤0 for any i ∈ I (x) .

But λ ∈ Rm
+ and then taking λi = 0 for i ∈ J (x), we get

(26)
∑
i∈I

λi (dg)
+ (

(x, η (x̃, x)) , ui
)
≤0.

Now, by (25) and (26), we obtain

p∑
j=1

λ0j (dfj)
+
(x, η (x̃, x)) +

∑
i∈I

λi (dg)
+ (

(x, η (x̃, x)) , ui
)
< 0,

which is a contradiction to (16). Hence is a weak minimum for (P) and the
theorem is proved. □



420 MONIKA JAISWAL, SHASHI KANT MISHRA, AND BADER AL SHAMARY

5. Duality

We consider, for (P), a Mond-Weir dual (MWD) as

maximize f (y)

subject to
(27)

p∑
j=1

λ0j (dfj)
+
(y, η (x, y)) +

∑
i∈I

λi (dg)
+ (

(y, η (x, y)) , ui
)
≥0 for all x ∈ X,

(28)
∑
i∈I

λig
(
y, ui

)
≥0,

λ0
T

e = 1, λ0 ≥ 0, λ0 ∈ Rp,

(29) λ≥0, y ∈ X0.

Let W denote the set of all feasible solutions of (MWD). Now we establish
certain duality results between (P) and (MWD). Assume that f and g are
η-semidifferentiable on X.

Theorem 7 (Weak duality). Assume that x is feasible for (P) and
(
y, ui, λ0, λ

)
is feasible for (WMD). If the pair of functions fj (.) and

∑
i∈I λig

(
., ui

)
is η-

semilocally pseudo-quasi-type I-preinvex at y for all j ∈M , then

fj (y)≤fj (x) for any j ∈M .

Proof. Suppose on contrary that

(30) fj (y) > fj (x) for any j ∈M.

Since the pair of functions fj (·) and
∑

i∈I λig
(
·, ui

)
is η-semilocally pseudo-

quasi-type I-preinvex at y for all j ∈M , from (30) we get

(dfj)
+
(y, η (x, y)) < 0 for any j ∈M .

Using λ0j ∈ Rp
+, λ

0T e = 1, we obtain

(31)

p∑
j=1

λ0j (dfj)
+
(y, η (x, y)) < 0.

Now, from (28), we get

−
∑
i∈I

λig
(
y, ui

)
≤0.

Hence, we have

(32)
∑
i∈I

λi (dg)
+ (

(y, η (x, y)) , ui
)
≤0.
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Adding (31) and (32), we get

p∑
j=1

λ0j (dfj)
+
(y, η (x, y)) +

∑
i∈I

λi (dg)
+ (

(y, η (x, y)) , ui
)
< 0,

which is a contradiction to (27). Hence,

fj (y)≤fj (x) for any j ∈M . □

Now, we consider, for (P), a general Mond-Weir dual (GMWD) as

maximize f +
∑

i∈I0
λig

(
y, ui

)
subject to
(33)

p∑
j=1

λ0j (dfj)
+
(y, η (x, y)) +

∑
i∈I

λi (dg)
+ (

(y, η (x, y)) , ui
)
≥0 for all x ∈ X,

(34)
∑
i∈Is

λig
(
y, ui

)
≥0

(
1≤s≤γ

)
,

λ0
T

e = 1, λ0 ≥ 0, λ0 ∈ Rp,

(35) λ≥0, y ∈ X0,

where γ≥1, Is ∩ It = ϕ for s ̸= t and
∪γ

s=0 Is = I.

Let W
′
denote the set of all feasible solutions of (GMWD). Also, we define

the following sets:

A =
{(
λ0, λ

)
∈ Rp × Rm :

(
y, ui, λ0, λ

)
∈W

′
for some y ∈ X0

}
,

and, for
(
λ0, λ

)
∈ A,

B
(
λ0, λ

)
=

{
y ∈ X0 :

(
y, ui, λ0, λ

)
∈W

′
}
.

We put B =
∪

(λ0,λ)∈AB
(
λ0, λ

)
and note that B ⊂ X0. Also, we note that if(

y, ui, λ0, λ
)
∈W

′
, then

(
λ0, λ

)
∈ A and y ∈ B

(
λ0, λ

)
.

Now we establish certain duality results between (P) and (GMWD). Assume
that f and g are η-semidifferentiable on X.

Theorem 8 (Weak duality). Assume that for all feasible solutions x ∈ X

and
(
y, ui, λ0, λ

)
∈ W

′
for (P) and (GMWD), respectively, the pair of func-

tions fj (·)+
∑

i∈I0
λig

(
·, ui

)
and

∑
i∈Is

λ0i g
(
y, ui

)
, for 1≤s≤γ, is η-semilocally

strict pseudo-quasi-type I-preinvex at y on B
(
λ0, λ

)
for all j ∈ M . Then the

following cannot hold:

(36) fj (x)≤fj (y) +
∑
i∈I0

λig
(
y, ui

)
for any j ∈M.
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Proof. Using the feasibility of
(
y, ui, λ0, λ

)
for (GMWD), we obtain

(37) −
∑
i∈Is

λig
(
y, ui

)
≤0 for all s, 1≤s≤γ.

By (37) and assumption of the theorem, we get

(38)
∑
i∈Is

λi (dg)
+ (

(y, η (x, y)) , ui
)
≤0, 1≤s≤γ.

Now, we suppose to the contrary that (36) hold. Hence, using (36) and feasi-
bility of x for (P), we obtain

(39) fj (x) +
∑
i∈I0

λig
(
x, ui

)
≤ fj (y) +

∑
i∈I0

λig
(
y, ui

)
for any j ∈M.

Using assumption of the theorem and (39), we can have

(40) (dfj)
+
(y, η (x, y)) +

∑
i∈I0

λi (dg)
+ (

(y, η (x, y)) , ui
)
< 0 for any j ∈M.

By (35) and (40), we get
p∑

j=1

λ0j (dfj)
+
(y, η (x, y)) +

∑
i∈I0

λi (dg)
+ (

(y, η (x, y)) , ui
)
< 0.

Now, by (33) and above equation, we obtain
γ∑

s=1

∑
i∈Is

λi (dg)
+ (

(y, η (x, y)) , ui
)
> 0,

which is a contradiction to (38). Thus, the theorem is proved. □
Theorem 9 (Weak duality). Assume that for all feasible solutions x ∈ X

and
(
y, ui, λ0, λ

)
∈ W

′
for (P) and (GMWD), respectively, the pair of func-

tions fj (·)+
∑

i∈I0
λig

(
·, ui

)
and

∑
i∈Is

λ0i g
(
y, ui

)
, for 1≤s≤γ, is η-semilocally

pseudo-quasi-type I-preinvex at y on B
(
λ0, λ

)
for all j ∈M with λ0 > 0. Then

the following cannot hold:

fj (x)≤fj (y) +
∑

i∈I0
λig

(
y, ui

)
for any j ∈M .

Proof. The proof is very similar to the proof of Theorem 8. □
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