• Title/Summary/Keyword: Moment equation

Search Result 583, Processing Time 0.03 seconds

SOBOLEV ORTHOGONAL POLYNOMIALS RELATIVE TO ${\lambda}$p(c)q(c) + <${\tau}$,p'(x)q'(x)>

  • Jung, I.H.;Kwon, K.H.;Lee, J.K.
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.603-617
    • /
    • 1997
  • Consider a Sobolev inner product on the space of polynomials such as $$ \phi(p,q) = \lambda p(c)q(c) + <\tau,p'(x)q'(x)> $$ where $\tau$ is a moment functional and c and $\lambda$ are real constants. We investigate properties of orthogonal polynomials relative to $\phi(\cdot,\cdot)$ and give necessary and sufficient conditions under which such Sobolev orthogonal polynomials satisfy a spectral type differential equation with polynomial coefficients.

  • PDF

Analysis of Statically Indeterminate Bearing-Shaft System and Prediction of the Behavior of Ball Bearing (베어링-축계의 부정정계 해석 및 볼베어링의 거동예측)

  • 김완두;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.70-76
    • /
    • 1993
  • From the analysis of shaft-bearing indeterminate system, moment and misalingment angle which was generated in bearing were determined. And the influence of span length between bearings on the fatigue life was established. The equation to estimate the cage rotational speed was proposed, and this equation was verified by the measuring of cage speed and shaft speed. And accoding to quasi-static analysis, the spinning speed of ball was determined.

  • PDF

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

Nonlinear Finite Element Analysis Model for Ultimate Capacity Estimation of End-Plate Connection (단부평판 접합부의 극한저항능력 평가를 위한 비선형 유한요소해석 모델)

  • 최창근;정기택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.23-28
    • /
    • 1992
  • The ultimate capacity of end-plate connection is investigated through nonlinear finite element analysis. The example models are divided into stiffened case and unstiffened one. The refined finite element models are analyzed by utilizing a general purpose structural analysis computer program ADINA and the moment-rotation relationships of the connection are determined. The results are compared with the regression equation deduced by Krishnamurthy. It is planned to deduce a bilinear regression equation through a parametric study on various dimensions of the connection.

  • PDF

A continuous time asymmetric power GARCH process driven by a L$\'{e}$vy process

  • Lee, Oe-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1311-1317
    • /
    • 2010
  • A continuous time asymmetric power GARCH(1,1) model is suggested, based on a single background driving L$\'{e}$vy process. The stochastic differential equation for the given process is derived and the strict stationarity and kth order moment conditions are examined.

The Transverse Dynamic Stability of Hard-chine Planing Craft

  • Lewandowski, Edward-M.
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • A method to predict the dynamic roll stability of hard-chine planing craft is presented. Starting with the equation of motion, an equation governing small roll perturbations is developed. The roll restoring moment acting on the hull is evaluated by considering “static”and dynamic contributions. The contribution of rudders and skegs, which is significant for this type of craft, is also determined. A worked example is presented to show how the method can be used to find the maximum center of gravity height for transverse stability.

  • PDF

Postcracking Torsional Stiffness of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 균열후 비틀림 강성)

  • 음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.51-58
    • /
    • 1991
  • In staically indeterminate structures torsional stiffness is an important factor for prediction of mechanical behavior at all loading stages in reinfored concrete beams, which also for calculation of torsional moment. This paper proposes equation for postcracking torsional stiffness of reinforced concrete beams under pure torsion, which is derived considering the equilibrium and compatibility condition for shear panel based on the variable angle space truss model. The equation describes well the effect according to the variation of aspect ratio and steel volume ratio per unit concrete volume. It agress with experimental results in this paper as well as available literature.

  • PDF

Development of Displayer on Tipping-over rate for Hydraulic Excavator (유압 굴삭기의 전도율 표시장치의 개발)

  • 임태형;최종환;김용석;이홍선;양순용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.209-214
    • /
    • 2004
  • This paper deals with tipping over of hydraulic excavator's crane work. If excavator lift too heavy weight, excavator tipped up. This is 38% of whole excavator accidents. In this paper, tipping over load which is maximum load of excavator can lift with displacement of excavator links, real load and tipping over rate are calculated with Zero Moment Point. We designed the tipping-over stability criterion algorithm considering the dynamic characteristics to which ZMP theory is applied and discussed the usefulness of the proposed algorithm compared with the moment equilibrium equation through the simulation and the actual test.

  • PDF

CONDITIONAL MOMENT CLOSURE MODELING OF TURBULENT SPRAY COMBUSTION IN A DIRECT INJECTION DIESEL ENGINE

  • HAN I. S.;HUH K. Y.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.571-577
    • /
    • 2005
  • Combustion of turbulent sprays in a direct injection diesel engine is modeled by the conditional moment closure (CMC) model. The CMC routines are combined with the KIVA code to provide conditional flame structures to determine mean state variables, instead of mean reaction rates. An independent transport equation is solved for each flame group with equal mass of sequentially evaporating fuel vapor. CMC calculation begins as the fuel mass for each flame group begins to evaporate with corresponding initialization conditions. Comparison is made with measured pressure traces for four operating conditions at different rpm's and injection conditions. Results show that the CMC model with multiple flame histories can successfully be applied to ignition and mixing-controlled combustion phases of a diesel engine.

Dynamic characteristics of a simple beam subjected to prebending moments and moving loads with constant velocity (이동하중이 일정속도로 작용하는 단순보에서 prebending moment에 의한 동적특성)

  • 강진선;김찬묵
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 1981
  • This paper presents the dynamic behaviour of a simple beam subjected to moving loads and prebending moments. The velocity of the moving loads is assumed constant, and the prebending moment is assumed to be M. The fundamental equation of motion of the beam is derived from the principle of virtual works and solved by using Duhamel's Integral. In this paper we found that the dimensionless deflection at the middle of beam was related with prebending moment(M), velocity(V) and magnitude of the moving load(F) ; that is y/y$_{0}$=1/1-.betha.$^{2}$-.pi.M/Fl The faster the velocity becomes, the deeper the maximum deflection becomes. And the maximum deflection at the middle of beam was occurred after the moving load passed the midpoint of beam.

  • PDF