• Title/Summary/Keyword: Molybdenum Thin Film

Search Result 49, Processing Time 0.031 seconds

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF

Active control of field emitter arrays with a-Si:H TFTs (비정질 실리콘 박막 트랜지스터에 의한 전계방출기 어레이의 능동제어)

  • 엄현석;송윤호;강승열;정문연;조영래;황치선;이상균;김도형;이진호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.33-36
    • /
    • 2000
  • Active-controlled field emitter arrays (ACFEAs) are developed by monolithically integrating molybdenum field emitter arrays with amorphous silicon thin film transistors (a-Si:H TFTs) on glass substrate. Transfer and output characteristics of the fabricated ACFEAs showed that the emission currents of FEAs can be accurately controlled by the gate bias voltages of TFTs. Also, the emission currents of the ACFEAs kept stable without any fluctuations during the 30 min-operation.

  • PDF

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum (이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성)

  • Hwang, Ji Sub;Yun, Hee-Sun;Jang, Yoon Hee;Lee, Jang mi;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.45-49
    • /
    • 2020
  • Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

200 MeV Ag15+ ion beam irradiation induced modifications in spray deposited MoO3 thin films by fluence variation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Vijayarangamuthu, K.;Kumar, A. Sendil;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1983-1990
    • /
    • 2019
  • Spray deposited Molybdenum trioxide (MoO3) thin film of thickness nearly 379 nm were irradiated with 200 MeV Ag15+ ion beam at different fluences (Ø) of 5 ×1011, 1 × 1012, 5 × 1012 and 1 × 1013 ions/㎠. The X-ray diffraction (XRD) pattern of the pristine film confirms orthorhombic structure and the crystallinity decreased after irradiation with the fluence of 5 × 1011 ions/㎠ due to irradiation induced defects and became amorphous at higher fluence. In pristine film, Raman modes at 665, 820, 996 cm-1 belong to Mo-O stretching, 286 cm-1 belong to Mo-O bending mode and those below 200 cm-1 are associated with lattice modes. Raman peak intensities decreased upon irradiation and vanished completely for the ion fluence of 5 ×1012 ions/㎠. The percentage of optical transmittance of pristine film was nearly 40%, while for irradiated films it decreased significantly. Red shift was observed for both the direct and indirect band gaps. The pristine film surface had densely packed rod like structures with relatively less porosity. Surface roughness decreased significantly after irradiation. The electrical transport properties were also studied for both the pristine and irradiated films by Hall effect. The results are discussed.

Active-Matrix Field Emission Display with Amorphous Silicon Thin-Film Transistors and Mo-Tip Field Emitter Arrays

  • Song, Yoon-Ho;Hwang, Chi-Sun;Cho, Young-Rae;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.290-298
    • /
    • 2002
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) in which an amorphous silicon thin-film transistor (a-Si TFT) and a molybdenum-tip field emitter array (Mo-tip FEA) were monolithically integrated on a glass substrate for a novel active-matrix cathode (AMC) plate. The fabricated AMFED showed good display images with a low-voltage scan and data signals irrespective of a high voltage for field emissions. We introduced a light shield layer of metal into our AMC to reduce the photo leakage and back channel currents of the a-Si TFT. We designed the light shield to act as a focusing grid to focus emitted electron beams from the AMC onto the corresponding anode pixel. The thin film depositions in the a-Si TFTs were performed at a high temperature of above 360°C to guarantee the vacuum packaging of the AMC and anode plates. We also developed a novel wet etching process for $n^+-doped$ a-Si etching with high etch selectivity to intrinsic a-Si and used it in the fabrication of an inverted stagger TFT with a very thin active layer. The developed a-Si TFTs performed well enough to be used as control devices for AMCs. The gate bias of the a-Si TFTs well controlled the field emission currents of the AMC plates. The AMFED with these AMC plates showed low-voltage matrix addressing, good stability and reliability of field emission, and good light emissions from the anode plate with phosphors.

  • PDF

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

Effect of the Sulfurization Temperature and Annealing Time of E-Beam Evaporated Sn Precursors on the Growth of SnSx Thin Films (E-빔 증착된 Sn 전구체의 황화 열처리 온도 및 시간에 따른 SnSx 박막 성장 효과)

  • Huang, Tingjian;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.734-739
    • /
    • 2017
  • We prepared $SnS_x$ thin films on both soda-lime glass (SLG) and molybdenum(Mo)/SLG substrates by a two-step process using a Sn precursor followed by sulfur reaction in rapid thermal annealing (RTA) at different sulfurization temperatures ($Ts=200^{\circ}C$, $230^{\circ}C$, $250^{\circ}C$, and $300^{\circ}C$) and annealing times ($t_s=10min$ and 30 min). The single SnS phase was dominant for $200^{\circ}C{\leq}T_s$<$250^{\circ}C$, while an additional phase of $SnS_2$ was appeared at $T_s{\geq}250^{\circ}C$ alongside SnS. The SnS grains in all the samples showed strong growth along the preferred [040] direction. The band-gap energy ($E_g$) of the films was estimated to be 1.24 eV.

Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process (TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사)

  • Lee, H.M.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

Characteristics of Mo Thin Films Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링 방법에 의해 증착된 Mo 박막의 특성)

  • Kong, Seon-Mi;Xiao, Yubin;Kim, Eun-Ho;Chung, Chee-Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.195-199
    • /
    • 2011
  • Mo thin films were deposited on soda lime glass at room temperature by using DC magnetron sputtering The electrical and structural properties of the films were investigated by varying DC power and gas pressure as the deposition parameter. As DC power increased, the deposition rate of Mo films was increased and the electrical resistivity was decreased. It was observable that the crystallinity of the films was improved with increasing DC power. As gas pressure decreased, the deposition rate and resistivity of the films were decreased, and long rectangular grains were densely formed. With increasing gas pressure, the grains were transformed to a round shape and the voids on the film surface were increased. It was confirmed that the electrical resistivity of Mo films was increased as the amount of oxygen combined with Mo atoms increased. It was also disclosed that the films have low resistivity as the degree of coupling of oxygen with Mo was reduced due to the enhancement of the crystallinity of the films.