Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.11.734

Effect of the Sulfurization Temperature and Annealing Time of E-Beam Evaporated Sn Precursors on the Growth of SnSx Thin Films  

Huang, Tingjian (Department of Energy Convergence Engineering, Cheongju University)
Kim, Jeha (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.11, 2017 , pp. 734-739 More about this Journal
Abstract
We prepared $SnS_x$ thin films on both soda-lime glass (SLG) and molybdenum(Mo)/SLG substrates by a two-step process using a Sn precursor followed by sulfur reaction in rapid thermal annealing (RTA) at different sulfurization temperatures ($Ts=200^{\circ}C$, $230^{\circ}C$, $250^{\circ}C$, and $300^{\circ}C$) and annealing times ($t_s=10min$ and 30 min). The single SnS phase was dominant for $200^{\circ}C{\leq}T_s$<$250^{\circ}C$, while an additional phase of $SnS_2$ was appeared at $T_s{\geq}250^{\circ}C$ alongside SnS. The SnS grains in all the samples showed strong growth along the preferred [040] direction. The band-gap energy ($E_g$) of the films was estimated to be 1.24 eV.
Keywords
$SnS_x$ thin film growth; Sulfurization temperature; Annealing time; Two-step process; Rapid thermal annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 National Renewable Energy Laboratory (NREL), Best Research-cell Efficiencies (Online), https://www.nrel.gov/pv/assets/images/efficiency-chart.png (2017).
2 N. Sato, M. Ichimura, E. Arai, and Y. Yamazaki, Sol. Energy Mater. Sol. Cells, 85, 153 (2005). [DOI: https://doi.org/10.1016/j.solmat.2004.04.014]   DOI
3 M. Devika, N. K. Reddy, K. Ramesh, H. R. Sumana, K. R. Gunasekhar, E.S.R. Gopal, and K.T.R. Reddy, Semicond. Sci. Technol.. 21, 1495 (2006). [DOI: https://doi.org/10.1088/0268-1242/21/10/024]   DOI
4 V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R. E. Brandt, J. R. Poindexter, Y. S. Lee, L. Sun, A. Polizzotti, H. H. Park, R. G. Gordon, and T. Buonassisi, Adv. Mater., 26, 7488 (2014). [DOI: https://doi.org/10.1002/adma.201402219]   DOI
5 Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys., 15, 897 (2015). [DOI: https://doi.org/10.1016/ j.cap.2015.03.026]   DOI
6 J. J. Loferski, J. Appl. Phys., 27, 777 (1956). [DOI: https://doi.org/10.1063/1.1722483]   DOI
7 J. P. Singh and R. K. Bedi, Thin Solid Films, 199, 9 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90046-z]   DOI
8 P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mater., 4, 1400496 (2014). [DOI: https://doi.org/10.1002/aenm.201400496]   DOI
9 C. Cifuentes, M. Botero, E. Romero, C. Calderon, G. Gordillo, Braz. J. Phys., 36, 1046 (2006). [DOI: https://doi.org/10.1590/s0103-97332006000600066]   DOI
10 V.R.M. Reddy, S. Gedi, C. Park, R. W. Miles, and K.T.R. Reddy, Curr. Appl. Phys. 15, 588 (2015). [DOI: https://doi.org/10.1016/j.cap.2015.01.022]   DOI
11 K. Hartman, J. L. Johnson, M. I. Bertoni, D. Recht, M. J. Aziz, M. A. Scarpulla, and T. Buonassisi, Thin Solid Films, 519, 7421 (2011). [DOI: https://doi.org/10.1016/j.tsf.2010.12.186]   DOI
12 M. Ichimura, K. Takeuchi, Y. Ono, and E. Arai, Thin Solid Films, 361, 98 (2000). [DOI: https://doi.org/10.1016/s0040-6090(99)00798-1]
13 K.T.R. Reddy, N. K. Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells, 90, 3041 (2006). [DOI: https://doi.org/10.1016/j.solmat.2006.06.012]   DOI
14 S. Gedi, V.R.M. Reddy, B. Pejjai, C. W. Jeon, C. Park, and K.T.R. Reddy, Appl. Surf. Sci., 372, 116 (2016). [DOI: https://doi.org/10.1016/j.apsusc.2016.03.032]   DOI
15 S. Jung and J. Kim, J. Nanosci. Nanotechnol., 16, 5279 (2016). [DOI: https://doi.org/10.1166/jnn.2016.12196]   DOI
16 C. W. Jeon, Proc. CIGS Thin Film Photovoltaics Workshop 2015 (Korean Photovoltaics Society, Busan, 2015) p. 187.
17 R. Caballero, V. Conde, and M. Leon, Thin Solid Films, 612, 202 (2016). [DOI: https://doi.org/10.1016/j.tsf.2016.06.018]   DOI