• Title/Summary/Keyword: Molecular manipulation

Search Result 91, Processing Time 0.022 seconds

State-of-the Art Review in Nano-Biomanipulation Technologies (나노-바이오 매니퓰레이션 기술의 현황 및 전망)

  • Kim Deok-Ho;Kim Byungkyu;Park Jong-Oh;Ju Byeong-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.353-362
    • /
    • 2005
  • This article describes a state-of-the art review in nano-biomanipulation technologies. Nanomanipulation of biological objects enables an in-depth study of single molecules such as DNA and RNA, and of biophysical events at the molecular level like molecular motors. Controlled nanomanipulation is challenging but essential for precisely engineering biomolecules or cells and for manufacturing functional nano-biosystems. In this paper, we summarize several contact, non-contact and hybrid methods available for nanomanipulation of biological objects. Advantages currently available methods and their limitations are also compared. Finally, we discuss possible applications of nano-biomanipulation technologies to life science and molecular medicine including cell biology, genetic engineering, biophysics, and biochemistry.

Some Molecular Characteristics and Improving Methods for Thermal Stability of Enzyme (효소단백질 열안정성의 분자구조적 특성 및 증진기법)

  • 김남수;김수일
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.100-108
    • /
    • 1991
  • Molecular characteristics and improving methods for thermal stability of enzyme have been considered. Intrinsic and extrinsic stabilizing mechanisms are two governing principles for enhanced thermal stability of enzyme in molecular basis. Factors contributing to the former and the latter mechanisms may be involved in the enhanced thermal stability of enzyme complementarily. Also, the methods for improving thermal stability of enzyme which comprise reaction in organic solvent system, chemical modification, immobilization, sequential unfolding and refolding, gene manipulation techniques and enzyme-antibody complexing are reviewed.

  • PDF

Efficiency of Rotational Operators for Geometric Manipulation of Chain Molecules

  • Seok, Chaok;Coutsias, Evangelos A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1705-1708
    • /
    • 2007
  • Geometric manipulation of molecules is an essential elementary component in computational modeling programs for molecular structure, stability, dynamics, and design. The computational complexity of transformation of internal coordinates to Cartesian coordinates was discussed before.1 The use of rotation matrices was found to be slightly more efficient than that of quaternion although quaternion operators have been widely advertised for rotational operations, especially in molecular dynamics simulations of liquids where the orientation is a dynamical variable.2 The discussion on computational efficiency is extended here to a more general case in which bond angles and sidechain torsion angles are allowed to vary. The algorithm of Thompson3 is derived again in terms of quaternions as well as rotation matrices, and an algorithm with optimal efficiency is described. The algorithm based on rotation matrices is again found to be slightly more efficient than that based on quaternions.

Quantum computing using applied electric field to quantum dots

  • Meighan, A.;Rostami, A.;Abbasian, K.
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In recent years, spins of confined carriers in quantum dots are promising candidates for the logical units in quantum computers. In many concepts developed so far, the individual spin q-bits are being manipulated by magnetic fields, which is difficult to achieve. In the current research the recent developments of spin based quantum computing has been reviewed. Then, Single-hole spin in a molecular quantum dots with less energy and more speed has been electrically manipulated and the results have been compared with the magnetic manipulating of the spin.

Simple Synthetic Manipulation Allowing for Morphological Diversity of Porphyrin-Based Microcrystals

  • Lee, Jun-Ho;Ryu, Eui-Hyun;Kim, Sung-Tae;Lee, Suk-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.609-612
    • /
    • 2011
  • Amphiphilic (porphyrin)Sn$(OH)_2$ molecular building block can directly translate into well-defined solid-state microcrystalline structures. The crystalline diamond plates are obtained from ethanol and crystalline square plates are grown from methanol solution. With a simple synthetic manipulation during the microcrystal growth, the morphologies can be controlled by adopting different molecular packing. Consequently, morphologies of microcrystals have been diversified. Furthermore, the macroscopic crystals were obtained in the presence of cetyltrimethylammonium bromide (CTAB).

Effect of First-Stage Growth Manipulation and Polarity of SiC Substrates on AlN Epilayers Grown Using Plasma-Assisted Molecular Beam Epitaxy

  • Le, Duy Duc;Kim, Dong Yeob;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.266-270
    • /
    • 2014
  • Aluminum nitride(AlN) films were grown on the C-face and on the Si-face of (0001) silicon carbide(SiC) substrates using plasma-assisted molecular-beam epitaxy(PA-MBE). This study was focused on first-stage growth manipulation prior to the start of AlN growth. Al pre-exposure, N-plasma pre-exposure, and simultaneous exposure(Al and N-plasma) procedures were used in the investigation. In addition, substrate polarity and, first-stage growth manipulation strongly affected the growth and properties of the AlN films. Al pre-exposure on the C-face and on the Si-face of SiC substrates prior to initiation of the AlN growth resulted in the formation of hexagonal hillocks on the surface. However, crack formation was observed on the C-face of SiC substrates without Al pre-exposure. X-ray rocking-curve measurements revealed that the AlN epilayers grown on the Si-face of the SiC showed relatively lower tilt and twist mosaic than did the epilayers grown on the C-face of the SiC. The results from the investigations reported in this paper indicate that the growth conditions on the Si-face of the SiC without Al pre-exposure was highly preferred to obtain the overall high-quality AlN epilayers formed using PA-MBE.

Utilization of Molecular Markers in Plant Genetics and Breeding (식물유전 및 육종학 연구에서의 분자생물학적 마커기술의 이용)

  • 이주경
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.200-210
    • /
    • 1997
  • The understanding on the plant genome is accelerated with the fast advance of molecular biological techniques. The molecular dissecting of the plant genome has made possible the precise genotyping the plants, which can be utilized for molecular breeding program. As well, the molecular cloning of genes interested can facilitate the process of gene transfer between intra-and inter-generic taxa. Moreover, the manipulation of the agronomically important QTL genes, which can be rarely performed by the conventional genetic methods, is also possible by the utilization of molecular markers. In addition to these genetical applications, molecular markers are useful in the areas of plant taxonomy and management of germplasm by fingerprinting analysis. This paper describes the theoretical aspects marker technologies and practical applications of each marker technique.

  • PDF

Preparation of Self-Assembled Crystalline Microparticles with Bispyridyl Zn-Porphyrin

  • Lee, Da-Hee;Lee, Suk-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1317-1320
    • /
    • 2012
  • Well-defined solid-state microcrystalline structures from bispyridyl Zn-porphyrin have been successfully synthesized. The coordinative interactions between pyridine and Zn are main responsible for this translation of porphyrin molecular building blocks to crystalline microscopic objects. The hexagonal plates are obtained from acetonitrile and rhombus plates are grown from toluene solution. With a simple manipulation during the microcrystal growth, such as growth temperature and time, the morphologies can be controlled by adopting different molecular packing. Consequently, morphologies of microcrystals have been diversified.

An Easy-to-Use Three-Dimensional Molecular Visualization and Analysis Program: POSMOL

  • Lee, Sang-Joo;Chung, Hae-Yong;Kim, Kwang S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1061-1064
    • /
    • 2004
  • Molecular visualization software has the common objective of manipulation and interpretation of data from numerical simulations. They visualize many complicated molecular structures with personal computer and workstation, to help analyze a large quantity of data produced by various computational methods. However, users are often discouraged from using these tools for visualization and analysis due to the difficult and complicated user interface. In this regard, we have developed an easy-to-use three-dimensional molecular visualization and analysis program named POSMOL. This has been developed on the Microsoft Windows platform for the easy and convenient user environment, as a compact program which reads outputs from various computational chemistry software without editing or changing data. The program animates vibration modes which are needed for locating minima and transition states in computational chemistry, draws two and three dimensional (2D and 3D) views of molecular orbitals (including their atomic orbital components and these partial sums) together with molecular systems, measures various geometrical parameters, and edits molecules and molecular structures.